Approximate Reachability Computation for Polynomial Systems

  • Thao Dang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


In this paper we propose an algorithm for approximating the reachable sets of systems defined by polynomial differential equations. Such systems can be used to model a variety of physical phenomena. We first derive an integration scheme that approximates the state reachable in one time step by applying some polynomial map to the current state. In order to use this scheme to compute all the states reachable by the system starting from some initial set, we then consider the problem of computing the image of a set by a multivariate polynomial. We propose a method to do so using the Bézier control net of the polynomial map and the blossoming technique to compute this control net. We also prove that our overall method is of order 2. In addition, we have successfully applied our reachability algorithm to two models of a biological system.


Control Point Hybrid System Integration Scheme Geometric Design Polynomial System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. In: Proc. of the IEEE (2000)Google Scholar
  2. 2.
    Greenstreet, M., Mitchell, I.: Integrating projections. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Dang, T., Maler, O.: Reachability analysis via face lifting. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Chutinan, A., Krogh, B.: Verification of polyhedral invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the verification of hybrid systems. Proceedings of the IEEE 91(7), 986–1001 (2003)CrossRefGoogle Scholar
  8. 8.
    Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. In: Hybrid Systems: Computation and Control. LNCS, Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Alur, R., Dang, T., Ivancic, F.: Reachability analysis via predicate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Asarin, E., Dang, T.: Abstraction by projection. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, London (1990)MATHGoogle Scholar
  18. 18.
    Davyrov, O., Sommer, M., Strauss, H.: On almost interpolation by multivariate splines. In: Nürnberger, G., Walz, J.G. (eds.) Multivariate Approximation and Splines, pp. 45–58. ISNM, Birkhäuser (1997)Google Scholar
  19. 19.
    Ramshaw, L.: Blossoms are polar forms. Computer Aided Geometric Design 6, 323–358 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Seidel, H.P.: Polar forms and triangular B-spline surfaces. In: Blossoming: The New Polar-Form Approach to Spline Curves and Surfaces, SIGGRAPH 1991. Course Notes 26, ACM SIGGRAPH, pp. 8.1–8.52 (1991)Google Scholar
  21. 21.
    Gallier, J.: Curves and surfaces in geometric modeling: theory and algorithms. In: Series In Computer Graphics and Geometric Modeling, Morgan Kaufmann, San Francisco (1999)Google Scholar
  22. 22.
    De Rose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition via blossoming. ACM Transactions on Graphics 12(2) (April 1993)Google Scholar
  23. 23.
    Lodha, S., Goldman, R.: Change of basis algorithms for surfaces in cagd. Computer Aided Geometric Design 12, 801–824 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    de Casteljau, P.: Formes à pôles. Hermes, Paris (1985)Google Scholar
  25. 25.
    Rivara, M.C.: Mesh refinement process based on the generalized bisection of simplices. SIAM Journal on Numerical Analysis 21, 604–613 (1984)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Vegter, G., Yap, C.: Minimal circumscribing simplices. In: Proc. of the 3rd Canadian Conference on Computational Geometry, Vancouver, Canada, pp. 58–61 (1991)Google Scholar
  27. 27.
    Fuhrmann, D.R.: A simplex shrink-wrap algorithm. In: Proceedings of SPIE, AeroSense (1999)Google Scholar
  28. 28.
    Belta, C., Schug, J., Dang, T., Kumar, V., Pappas, G., Rubin, H., Dunlap, P.: Stability and reachability analysis of a hybrid model of luminescence in the marine bacterium vibrio fisheri. In: Proc. of CDC (2001)Google Scholar
  29. 29.
    Belta, C., Habets, L.C.G.J.M., Kumar, V.: Control of multi-affine systems on rectangles with an application to gene transcription control. In: Proc. of CDC(2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thao Dang
    • 1
  1. 1.Centre EquationVERIMAGGièresFrance

Personalised recommendations