Advertisement

Optimality Zone Algorithms for Hybrid Systems: Efficient Algorithms for Optimal Location and Control Computation

  • Peter E. Caines
  • M. Shahid Shaikh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)

Abstract

A general Hybrid Minimum Principle (HMP) for hybrid optimal control problems (HOCPs) is presented in [1, 2, 3, 4] and in [4, 5], a class of efficient, provably convergent Hybrid Minimum Principle (HMP) algorithms were obtained based upon the HMP. The notion of optimality zones (OZs) ([3, 4]) provides a theoretical framework for the computation of optimal location (i.e. discrete state) schedules for HOCPs (i.e. discrete state sequences with the associated switching times and states). This paper presents the algorithm HMPOZ which fully integrates the prior computation of the OZs into the HMP algorithms class. Summing (a) the computational investment in the construction of the OZs for a given HOCP, and (b) the complexity of (i) the computation of the optimal schedule, (ii) the optimal switching time and optimal switching state sequence, and (iii) the optimal continuous control input, yields a complexity estimate for the algorithm HMPOZ which is linear (i.e. O(L)) in the number of switching times L.

Keywords

Optimal Control Problem Hybrid System Switching Time Discrete State Location Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shaikh, M.S., Caines, P.E.: On trajectory optimization for hybrid systems: Theory and algorithms for fixed schedules. In: Proc. 41st IEEE Int. Conf. Decision and Control, Las Vegas, pp. 1997–1998 (2002)Google Scholar
  2. 2.
    Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Optimization of trajectories, switching times, and location schedules. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 466–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Analysis and algorithms for trajectory and schedule optimization. In: Proc. 42nd IEEE Int. Conf. Decision and Control, Maui, Hawaii, pp. 2144–2149 (2003)Google Scholar
  4. 4.
    Shaikh, M.S.: Optimal Control of Hybrid Systems: Theory and Algorithms. PhD thesis, Department of Electrical and Computer Engineering, McGill University, Montréal, Canada (2004), Available: http://www.cim.mcgill.ca/~msshaikh/publications/thesis.pdf
  5. 5.
    Shaikh, M.S., Caines, P.E.: On the hybrid optimal control problem: Theory and algorithms. revised for IEEE Trans. Automat. Contr (2005)Google Scholar
  6. 6.
    Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Optimization of switching times and combinatoric location schedules. In: Proc. American Control Conference, Denver, pp. 2773–2778 (2003)Google Scholar
  7. 7.
    Xu, X., Antsaklis, P.J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Automat. Contr. 49(1), 2–16 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Contr. 43(1), 31–45 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Branicky, M.S., Mitter, S.K.: Algorithms for optimal hybrid control. In: Proc. 34th IEEE Int. Conf. Decision and Control, New Orleans, pp. 2661–2666 (1995)Google Scholar
  10. 10.
    Sussmann, H.: A maximum principle for hybrid optimal control problems. In: Proc. 38th IEEE Int. Conf. Decision and Control, Phoenix, pp. 425–430 (1999)Google Scholar
  11. 11.
    Riedinger, P., Kratz, F., Iung, C., Zanne, C.: Linear quadratic optimization of hybrid systems. In: Proc. 38th IEEE Int. Conf. Decision and Control, Phoenix, pp. 3059–3064 (1999)Google Scholar
  12. 12.
    Tomiyama, K.: Two-stage optimal control problems and optimality conditions. J. Economic Dynamics and Control 9(3), 317–337 (1985)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Clarke, F.H., Vinter, R.B.: Optimal multiprocesses. SIAM J. Control and Optimization 27(5), 1072–1079 (1989)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Clarke, F.H., Vinter, R.B.: Applications of optimal multiprocesses. SIAM J. Control and Optimization 27(5), 1048–1071 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Egerstedt, M., Wardi, Y., Delmotte, F.: Optimal control of switching times in switched dynamical systems. In: Proc. 42nd IEEE Int. Conf. Decision and Control, Maui, HI, pp. 2138–2143 (2003)Google Scholar
  16. 16.
    Wardi, Y., Egerstedt, M., Boccadoro, M., Verriest, E.: Optimal control of switching surfaces. In: Proc. 43rd IEEE Int. Conf. Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 1854–1859 (2004)Google Scholar
  17. 17.
    Axelsson, H., Egerstedt, M., Wardi, Y., Vachtsevanos, G.: Algorithm for switching-time optimization in hybrid dynamical systems. In: Proc. 2005 International Symposium on Intelligent Control/13th Mediterranean Conference on Control and Automation, Cypres, pp. 256–261 (2005)Google Scholar
  18. 18.
    Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Contr. 40(9), 1528–1538 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for hybrid control. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 393–406. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Giua, A., Seatzu, C., Mee, C.V.D.: Optimal control of autonomous linear systems switched with a pre-assigned finite sequence. In: Proc. 2001 IEEE International Symposium on Intelligent Control, pp. 144–149 (2001)Google Scholar
  21. 21.
    Giua, A., Seatzu, C., Mee, C.V.D.: Optimal control of switched autonomous linear systems. In: Proc. 40th IEEE Int. Conf. Decision and Control, Orlando, pp. 2472–2477 (2001)Google Scholar
  22. 22.
    Bemporad, A., Giua, A., Seatzu, C.: A master-slave algorithm for the optimal control of continuous-time switched affine systems. In: Proc. 41st IEEE Int. Conf. Decision and Control, Las Vegas, pp. 1976–1981 (2002)Google Scholar
  23. 23.
    Shaikh, M.S., Caines, P.E.: Optimality zone algorithms for hybrid systems computation and control. Technical report, ECE Department, McGill University (2005)Google Scholar
  24. 24.
    Caines, P.E., Shaikh, M.S.: Optimality zone algorithms for hybrid control systems. IEEE Trans. Automat. Contr (submitted to, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter E. Caines
    • 1
  • M. Shahid Shaikh
    • 1
  1. 1.Department of Electrical & Computer Engineering, Centre for Intelligent MachinesMcGill UniversityMontréal, QuébecCanada

Personalised recommendations