Improving Efficiency of Finite Plans by Optimal Choice of Input Sets

  • Antonio Bicchi
  • Alessia Marigo
  • Benedetto Piccoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


Finite plans proved to be an efficient method to steer complex control systems via feedback quantization. Such finite plans can be encoded by finite–length words constructed on suitable alphabets, thus permitting transmission on limited capacity channels. In particular flat systems can be steered computing arbitrarily close approximations of a desired equilibrium in polynomial time.

The paper investigates how the efficiency of planning is affected by the choice of inputs, and provides some results as to optimal performance in terms of accuracy and range. Efficiency is here measured in terms of computational complexity and description length (in number of bits) of finite plans.


Control Word Control Quantum Discrete Time Linear System Additive Approachability Finite Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anzai, Y.: A note on reachability of discrete–time quantized control systems. IEEE Trans. on Automatic Control 19(5), 575–577 (1974)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bicchi, A., Marigo, A., Piccoli, B.: On the reachability of quantized control systems. IEEE Trans. on Automatic Control 47(4), 546–563 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Marigo, A., Bicchi, A., Piccoli, B.: Encoding steering control with symbols. In: Proc. IEEE Int. Conf. on Decision and Control (2003)Google Scholar
  4. 4.
    Brockett, R.: On the computer control of movement. In: Proc. IEEE Conf. on Robotics and Automation, pp. 534–540 (April 1988)Google Scholar
  5. 5.
    Chitour, Y., Marigo, A., Piccoli, B.: Time optimal control for quantized input systems. In: Proc. IFAC Workshop on Nonlinear Control Systems (NOLCOS 2004) (2004)Google Scholar
  6. 6.
    Chitour, Y., Piccoli, B.: Controllability for discrete systems with a finite control set. Math. Control Signals Systems 14(2), 173–193 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Marigo, A.: Optimal choice of input sets for quantized systems. Mathematics of Control Signal and Systems (to appear, 2005)Google Scholar
  8. 8.
    De Luca, A., Oriolo, G.: Trajectory Planning and Control for Planar Robots with Passive Last Joint. The Internation Journal of Robotics Research 21(5-6) (2002)Google Scholar
  9. 9.
    Egerstedt, M.: Motion description languages for multimodal control in robotics. In: Bicchi, A., Christensen, H., Prattichizzo, D. (eds.) Control Problems in Robotics. STAR, vol. 4, pp. 75–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Egerstedt, M., Brockett, R.W.: Feedback Can Reduce the Specification Complexity of Motor Programs. IEEE Transaction on Automatic Control 48, 213–223 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples. Int. J. of Control 61, 1327–1361 (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-Based Motion Planning for Nonlinear Systems with Symmetries. IEEE Trans. on Robotics (to appear, 2005)Google Scholar
  13. 13.
    Guy, R.K.: Unsolved problems in number theory. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  14. 14.
    LaValle, S.M.: Planning Algorithms, Cambridge University Press (in print, 2005) also available at:
  15. 15.
    Manikonda, V., Krishnaprasad, P.S., Hendler, J.: A motion description language and hybrid architecture for motion planning with nonholonomic robots. In: Proc. Int. Conf. on Robotics and Automation (1995)Google Scholar
  16. 16.
    Marigo, A., Piccoli, B., Bicchi, A.: A group-theoretic characterization of quantized control systems. In: Proc. IEEE Int. Conf. on Decision and Control, pp. 811–816 (2002)Google Scholar
  17. 17.
    Okada, M., Nakamura, Y.: Polynomial design of dynamics-based infomration processing system. In: Bicchi, A., Christensen, H., Prattichizzo, D. (eds.) Control Problems in Robotics. STAR, vol. 4, pp. 91–104. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley Interscience Publ, Chichester (1986)MATHGoogle Scholar
  19. 19.
    Sontag, E.D.: Mathematical Control Theory. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
  20. 20.
    Tabuada, P.: Sensor/actuator abstractions for symbolic embedded control design. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 640–654. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Tabuada, P., Pappas, G.J.: Bisimilar Control Affine Systems. Systems & Control Letters 52, 49–58 (2004)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tabuada, P., Pappas, G.J.: Hierarchical trajectory generation for a class of nonlinear systems. Automatica 41, 701–708 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Wolsey, L.A.: Integer Programming. Wiley Interscience Publ, Chichester (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antonio Bicchi
    • 1
  • Alessia Marigo
    • 2
  • Benedetto Piccoli
    • 3
  1. 1.Interdepartmental Research Center “Enrico Piaggio”University of PisaItaly
  2. 2.Department of MathematicsUniversità di Roma – La SapienzaRomeItaly
  3. 3.C.N.R. Istituto per le Applicazioni del Calcolo “E. Picone”RomeItaly

Personalised recommendations