Skip to main content

Improving Efficiency of Finite Plans by Optimal Choice of Input Sets

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3927))

Included in the following conference series:

  • 1837 Accesses

Abstract

Finite plans proved to be an efficient method to steer complex control systems via feedback quantization. Such finite plans can be encoded by finite–length words constructed on suitable alphabets, thus permitting transmission on limited capacity channels. In particular flat systems can be steered computing arbitrarily close approximations of a desired equilibrium in polynomial time.

The paper investigates how the efficiency of planning is affected by the choice of inputs, and provides some results as to optimal performance in terms of accuracy and range. Efficiency is here measured in terms of computational complexity and description length (in number of bits) of finite plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anzai, Y.: A note on reachability of discrete–time quantized control systems. IEEE Trans. on Automatic Control 19(5), 575–577 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bicchi, A., Marigo, A., Piccoli, B.: On the reachability of quantized control systems. IEEE Trans. on Automatic Control 47(4), 546–563 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Marigo, A., Bicchi, A., Piccoli, B.: Encoding steering control with symbols. In: Proc. IEEE Int. Conf. on Decision and Control (2003)

    Google Scholar 

  4. Brockett, R.: On the computer control of movement. In: Proc. IEEE Conf. on Robotics and Automation, pp. 534–540 (April 1988)

    Google Scholar 

  5. Chitour, Y., Marigo, A., Piccoli, B.: Time optimal control for quantized input systems. In: Proc. IFAC Workshop on Nonlinear Control Systems (NOLCOS 2004) (2004)

    Google Scholar 

  6. Chitour, Y., Piccoli, B.: Controllability for discrete systems with a finite control set. Math. Control Signals Systems 14(2), 173–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Marigo, A.: Optimal choice of input sets for quantized systems. Mathematics of Control Signal and Systems (to appear, 2005)

    Google Scholar 

  8. De Luca, A., Oriolo, G.: Trajectory Planning and Control for Planar Robots with Passive Last Joint. The Internation Journal of Robotics Research 21(5-6) (2002)

    Google Scholar 

  9. Egerstedt, M.: Motion description languages for multimodal control in robotics. In: Bicchi, A., Christensen, H., Prattichizzo, D. (eds.) Control Problems in Robotics. STAR, vol. 4, pp. 75–89. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Egerstedt, M., Brockett, R.W.: Feedback Can Reduce the Specification Complexity of Motor Programs. IEEE Transaction on Automatic Control 48, 213–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples. Int. J. of Control 61, 1327–1361 (1995)

    Article  MATH  Google Scholar 

  12. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-Based Motion Planning for Nonlinear Systems with Symmetries. IEEE Trans. on Robotics (to appear, 2005)

    Google Scholar 

  13. Guy, R.K.: Unsolved problems in number theory. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  14. LaValle, S.M.: Planning Algorithms, Cambridge University Press (in print, 2005) also available at: http://msl.cs.uiuc.edu/planning/

  15. Manikonda, V., Krishnaprasad, P.S., Hendler, J.: A motion description language and hybrid architecture for motion planning with nonholonomic robots. In: Proc. Int. Conf. on Robotics and Automation (1995)

    Google Scholar 

  16. Marigo, A., Piccoli, B., Bicchi, A.: A group-theoretic characterization of quantized control systems. In: Proc. IEEE Int. Conf. on Decision and Control, pp. 811–816 (2002)

    Google Scholar 

  17. Okada, M., Nakamura, Y.: Polynomial design of dynamics-based infomration processing system. In: Bicchi, A., Christensen, H., Prattichizzo, D. (eds.) Control Problems in Robotics. STAR, vol. 4, pp. 91–104. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley Interscience Publ, Chichester (1986)

    MATH  Google Scholar 

  19. Sontag, E.D.: Mathematical Control Theory. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  20. Tabuada, P.: Sensor/actuator abstractions for symbolic embedded control design. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 640–654. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Tabuada, P., Pappas, G.J.: Bisimilar Control Affine Systems. Systems & Control Letters 52, 49–58 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tabuada, P., Pappas, G.J.: Hierarchical trajectory generation for a class of nonlinear systems. Automatica 41, 701–708 (2005)

    Article  MATH  Google Scholar 

  23. Wolsey, L.A.: Integer Programming. Wiley Interscience Publ, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bicchi, A., Marigo, A., Piccoli, B. (2006). Improving Efficiency of Finite Plans by Optimal Choice of Input Sets. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_11

Download citation

  • DOI: https://doi.org/10.1007/11730637_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33170-4

  • Online ISBN: 978-3-540-33171-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics