Advertisement

Event-Based Model Predictive Control and Verification of Integral Continuous-Time Hybrid Automata

  • Alberto Bemporad
  • Stefano Di Cairano
  • Jorge Júlvez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)

Abstract

This paper proposes an event-driven model predictive control scheme with guaranteed closed-loop convergence properties for the class of integral continuous-time hybrid automata (icHA). After converting icHA to a corresponding event-driven representation that allows one to compute the model predictive control action by mixed integer programming, sufficient conditions ensuring event-asymptotic and time-asymptotic convergence are proven. The paper also shows how the same modeling methodology can be employed to efficiently solve problems of verification of safety properties.

Keywords

Optimal Control Problem Hybrid System Mixed Integer Programming Model Predictive Control Discrete State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, pp. 278–292 (1996)Google Scholar
  2. 2.
    Lygeros, J., Johansson, K.H., Simic, S.N., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Tr. Automatic Control 48, 2–17 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gokbayrak, K., Cassandras, C.: Hybrid controllers for hierarchically decomposed systems. In: Krogh, B., Lynch, N. (eds.) Hybrid Systems: Computation and Control, pp. 117–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Optimization of trajectories, switching times, and location schedules. In: Hybrid Systems: Computation and Control, pp. 466–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Xu, X., Antsaklis, P.J.: Results and perspectives on computational methods for optimal control of switched systems. In: Hybrid Systems: Computation and Control, pp. 540–555. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bemporad, A., Di Cairano, S., Júlvez, J.: Event-driven optimal control of integral continuous-time hybrid automata. In: Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, pp. 1409–1414 (2005)Google Scholar
  8. 8.
    Maciejowski, J.: Predictive control with constraints. Prentice-Hall, Englewood Cliffs (2002)MATHGoogle Scholar
  9. 9.
    Qin, S., Badgwell, T.: A survey of industrial model predictive control technology. Control Engineering Practice 11, 733–764 (2003)CrossRefGoogle Scholar
  10. 10.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. Int. J. on Software Tools for Technology Transfer 1(1–2), 110–122 (1997)CrossRefMATHGoogle Scholar
  11. 11.
    Torrisi, F.D., Bemporad, A.: HYSDEL — A tool for generating computational hybrid models. IEEE Tr. Contr. Systems Technology 12(2), 235–249 (2004)CrossRefGoogle Scholar
  12. 12.
    Bemporad, A.: Efficient conversion of mixed logical dynamical systems into equivalent piecewise affine form. IEEE Tr. Automatic Control 49(5), 832–838 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lazar, M., Heemels, W., Weiland, S., Bemporad, A.: Stability of hybrid model predictive control. In: Proc. of Int. Workshop on Assessment and Future Directions of NMPC, Germany (2005)Google Scholar
  14. 14.
    Lazar, M., Heemels, W., Weiland, S., Bemporad, A.: Stability of hybrid model predictive control. In: Proc. 43th IEEE Conf. on Decision and Control, Paradise Island, Bahamas, pp. 4595–4560 (2004)Google Scholar
  15. 15.
    Ferrari-Trecate, G., Cuzzola, F.A., Morari, M.: Lagrange stability and performance analysis of discrete-time piecewise affine systems with logic states. Int. J. Control 76(16), 1585–1598 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alberto Bemporad
    • 1
  • Stefano Di Cairano
    • 1
  • Jorge Júlvez
    • 2
  1. 1.Dip. Ingegneria dell’InformazioneUniversitá di SienaItaly
  2. 2.Dep. Informática e Ingeniería de SistemasUniversidad de ZaragozaSpain

Personalised recommendations