Information Retrieval from Distributed Semistructured Documents Using Metadata Interface

  • Guija Choe
  • Young-Kwang Nam
  • Joseph Goguen
  • Guilian Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3915)


We describe a method for retrieving information from distributed heterogeneous semistructured documents, and its implementation in the metadata interface DDXMI (Distributed Document XML Metadata Interface). The system generates local queries appropriate for local schemas from a user query over the global schema and shows the result of the generated queries. The three components are designed to generate the local queries: mappings between global schema and local schemas (extracted from local documents if not given), path substitution, and node identification for resolving the heterogeneity among nodes with the same label that often exist in semistructured data. The system uses Quilt as its XML query language. An experiment is reported over three local semistructured documents: ‘thesis’, ‘reports’, and ‘journal’ documents with ‘article’ global schema. The prototype was developed under Windows system with Java and JavaCC.


Query Processing Global Schema Local Schema Local Document Path Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S.: Querying semistructured data. In: Proceedings of ICDT (1997)Google Scholar
  2. 2.
    Buneman, P.: Tutorial: Semistructured data. In: Proceedings of PODs (1997)Google Scholar
  3. 3.
    Cal‘y, A., Calvanese, D., Giacomo, G.D., Lenzerini, M.: View-based query answering and query containment over semistructured data. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Popa, L., Hernandez, M., Velegrakis, Y., Miller, R.J., Naumann, F., Ho, H.: Mapping xml and relational schemas with clio. In: Demo on ICDE 2002(2002)Google Scholar
  5. 5.
    Popa, L., Velegrakis, Y., Miller, R., Hernandez, M., Fagin, R.: Translating web data. In: Proc. 28th VLDB Conf. (2002)Google Scholar
  6. 6.
    Goguen, J.: Data, schema and ontology integration. In: Carnielli, W., Dionisio, M., Mateus, P. (eds.) Proc. Comblog 2004, pp. 21–31 (2004)Google Scholar
  7. 7.
    Chamberlin, D., Robie, J., Florescu, D.: Quilt: An XML Query Language for Heterogeneous Data Sources. In: Suciu, D., Vossen, G. (eds.) WebDB 2000. LNCS, vol. 1997, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Doan, A.-H., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources: A machine-learning approach. In: Proc. SIGMOD (2001)Google Scholar
  9. 9.
    Doan, A.-H.: Thesis: Learning to Translate between Structured Representations of Data. University of Washington (2003)Google Scholar
  10. 10.
    Do, H.-H., Rahm, E.: Coma - a system for flexible combination of schema matching approaches. In: Proc. 28th VLDB Conf. (2002)Google Scholar
  11. 11.
    He, B., Chang, K.C.-C.: Statistical Schema Matching across Web Query Interfaces. In: Proc. SIGMOD (2003)Google Scholar
  12. 12.
    Levy, A.Y.: Answering Queries Using Views: A Survey. VLDB Journal (2001)Google Scholar
  13. 13.
    McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A database management systems for semistructured data. SIGMOD Record 26 (1997)Google Scholar
  14. 14.
    Levy, A.: The Information Manifold approach to Data Integration. IEEE Intelligent Systems 13, 12–16 (1998)Google Scholar
  15. 15.
    Madhavan, J., Bernstein, P., Rahm, E.: Generic Schema Matching with Cupid. In: Proc. 27th VLDB Conference (2001)Google Scholar
  16. 16.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching. In: Proc. ICDE 2002 (2002)Google Scholar
  17. 17.
    Melnik, S., Rahm, E., Bernstein, P.: Rondo: A Programming Platform for Generic Model Management. In: Proc. SIGMOD (2003)Google Scholar
  18. 18.
    Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  19. 19.
    Nestorov, S., Abiteboul, S., Motwani, R.: Inferring Structure in Semistructured Data. In: Proceedings of the Workshop on Management of Semistructured Data (1997)Google Scholar
  20. 20.
    Nestorov, S., Abiteboul, S., Motwani, R.: Extracting schema from semistructured data. In: Proceedings of SIGMOD, pp. 295-306 (1998)Google Scholar
  21. 21.
    Nam, Y.K., Goguen, J., Wang, G.: A Metadata Integration Assistant Generator for Heterogeneous Distributed Databases. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1332–1344. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Nestorov, S., Ullman, J.D., Wiener, J.L., Chawathe, S.S.: Representative Objects: Concise representations of Semistructured, Hierarchical Data. In: Proceeding of ICDE, pp. 79–90 (1997)Google Scholar
  23. 23.
    Rahm, E., Bernstein, P.: On Matching Schemas Automatically. Technical report, Dept. Computer Science, Univ. of Leipzig (2001)Google Scholar
  24. 24.
    Xu, L., Embley, D.: Using Domain Ontologies to Discover Direct and Indirect Matches for Schema Elements. In: Proc. Semantic Integration Workshop (2003)Google Scholar
  25. 25.
    Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajarman, A., Sagiv, Y., Ullman, J., Vassalos, V., Widom, J.: The TSIMMIS Approach to Mediation: Data Models and Languages. Intelligent Information System 8(2) (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guija Choe
    • 1
  • Young-Kwang Nam
    • 1
  • Joseph Goguen
    • 2
  • Guilian Wang
    • 2
  1. 1.Department of Computer ScienceYonsei UniversityWonjuKorea
  2. 2.Department of Computer Science and EngineeringUCSDLa JollaUSA

Personalised recommendations