The Expressive Language ALCNHR+K(D) for Knowledge Reasoning

  • Nizamuddin Channa
  • Shanping Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3915)


The Expressive Language ALCNHR+(D) provides conjunction, full negation, quantifiers, number restrictions, role hierarchies, transitively closed roles and concrete domains. In addition to the operators known from ALCNHR+, a restricted existential predicate restriction operator for concrete domains is supported. In order to capture the semantic of complicated knowledge reasoning model, the expressive language ALCNHR+K(D) is introduced. It cannot only be able to represent knowledge about concrete domain and constraints, but also rules in some sense of closed world semantic model hypothesis. The paper investigates an extension to description logic based knowledge reasoning by means o f decomposing and rewriting complicated hybrid concepts into partitions. We present an approach that automatically decomposes the whole knowledge base into description logic compatible and constraints solver. Our arguments are two-fold. First, complex description logics with powerful representation ability lack effectively reasoning ability and second, how to reason with the combination of inferences from distributed heterogeneous reasoner.


Description Logic Concept Definition Atomic Concept Concept Term Hybrid Concept 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description logic framework for information integration. In: Proceedings of the 6th International Conference on rinciples of Knowledge Representation and Reasoning (KR 1998), pp. 2–13 (1998)Google Scholar
  2. 2.
    The Semantic Web lifts off ’by Tim Berners-Lee and Eric Miller, W3C. ERCIM News No. 51 (October 2002)Google Scholar
  3. 3.
    Metzger, F.: The challenge of capturing the semantics of STEP data models pre-cisely. In: Workshop on Product Knowledge Sharing for Integrated Enterprises (ProKSI 1996) (1996)Google Scholar
  4. 4.
    Baader, F., Sattler, U.: Description Logics with Concrete Domains and Aggregation. In: Prade, H. (ed.) Proceedings of the 13th European Conference on Artificial Intelligence (ECAI 1998), pp. 336–340. John Wiley & Sons Ltd, Chichester (1998)Google Scholar
  5. 5.
    Baader, F., Küsters, R.: Unification in a Description Logic with Transitive Closure of Roles. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 217–232. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Haarslev, V., Lutz, C., Möller, R.: A Description Logic with Concrete Domains and Role-forming Predicates. Journal of Logic and Computation 9(3), 351–384 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  8. 8.
    Horrocks, I., Sattler, U.: Optimised Reasoning for SHIQ. In: ECAI 2002, pp. 277–281 (2002)Google Scholar
  9. 9.
    Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive Descrip-tion Logics. Logic Journal of the IGPL 8(3), 239–264 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Compatangelo, E., Meisel, H.: K-Share: an architecture for sharing heterogeneous conceptualizations. In: Intl. Workshop on Intelligent Knowledge Management Techniques (I-KOMAT 2002) - Proc. of the 6th Intl. Conf. on Knowledge-Based Intelligent Informa-tion & Engineering Systems (KES 2002), pp. 1439–1443 (2002)Google Scholar
  11. 11.
    Haarslev, V., Möller, R., Wessel, M.: The Description Logic ALCNHR+ Ex-tended with Concrete Domains: A Practically Motivated Approach. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 29–44. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Domazet, D.: The automatic tool selection with the production rules matrix method. Annals of the CIRP 39(1), 497–500 (1990)CrossRefGoogle Scholar
  13. 13.
    Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Dretske, F.: Epistemic Operators. The Journal of Philosophy LXVII (24), 1007–1023Google Scholar
  15. 15.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: Adding epistemic operators to concept languages. In: Proceedings of the 3rd International Conference on the Principles of Knowledge Representation and Reasoning (KR 1992), pp. 342–353. Morgan Kaufmann, Los Altos (1992)Google Scholar
  16. 16.
    Pratt, M.: Introduction to ISO 10303 - The STEP Standard for Product Data Exchange, ASME Journal of Computing and Information Science in Engineering, November (2000)Google Scholar
  17. 17.
    Fu, X., Li, S.: Ontology Knowledge Representation for Product Data Model, Journal of Computer-Aided Design & Computer Graphics (to appear) (in Chinese)Google Scholar
  18. 18.
    Fu, X., Li, S., Guo, M., Channa, N.: Methodology for Semantic Representing of Product Data in XML. In: Proceedings of Advance Workshop on Content Computing, LNCS (2004)Google Scholar
  19. 19.
    Channa, N., Li, S., Fu, X.: Product Knowledge Reasoning: A DL-based approach. In: Proceedings Seven International Conference on Electronic Commerce (ICEC 2005), Xi’an, China, pp. 692–697. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nizamuddin Channa
    • 1
    • 2
  • Shanping Li
    • 1
  1. 1.College of Computer ScienceZhejiang UniversityHangzhouP.R. China
  2. 2.Institute of Business AdministrationUniversity of SindhJamshoroPakistan

Personalised recommendations