Advertisement

A Memetic Algorithm for the Biobjective Minimum Spanning Tree Problem

  • Daniel A. M. Rocha
  • Elizabeth F. Gouvêa Goldbarg
  • Marco César Goldbarg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3906)

Abstract

Combinatorial optimization problems with multiple objectives are, in general, more realistic representations of practical situations than their counterparts with a single-objective. The bi-objective minimum spanning tree problem is a NP-hard problem with applications in network design. In this paper a memetic algorithm is presented to solve this problem. A computational experiment compares the proposed approach with AESSEA, a known algorithm of the literature. The comparison of the algorithms is done with basis on the binary additive (-indicator. The results show that the proposed algorithm consistently produces better solutions than the other method.

Keywords

Memetic Algorithm Span Tree Problem Minimum Span Tree Problem Restricted Candidate List Tabu Search Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, V., Aneja, Y., Nair, K.: Minimal Spanning Tree Subject to a Side Constraint. Computers and Operations Research 9, 287–296 (1982)CrossRefGoogle Scholar
  2. 2.
    Bazlamaçci, C.F., Hindi, K.S.: Minimum-weight Spanning Tree Algorithms A Survey and Empirical Study. Computers and Operations Research 28, 767–785 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chartrand, G., Oellermann, O.R.: Applied and Algorithmic Graph Theory. McGraw-Hill, New York (1993)Google Scholar
  4. 4.
    Coello, C.A.: A Comprehensive Survey of Evolutionary-based Multiobjective Optimization Techniques. Knowledge and Information Systems 1, 269–308 (1999)CrossRefGoogle Scholar
  5. 5.
    Ehrgott, M.: Approximation Algorithms for Combinatorial Multicriteria Optimization Problems. International Transactions in Operational Research 7, 5–31 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization. OR Spektrum 22, 425–460 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ehrgott, M., Gandibleux, X.: Approximative Solution Methods for Multiobjective Combinatorial Optimization. Top 12(1), 1–89 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6, 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)MATHGoogle Scholar
  10. 10.
    Goldberg, D.: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann Publishers, San Francisco (1991)Google Scholar
  11. 11.
    Graham, R.L., Hell, P.: On the History of the Minimum Spanning Tree Problem. Ann. History of Comp. 7, 43–57 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gutin, G., Punnen, A.P.: Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  13. 13.
    Hakami, S.L.: Steiner’s Problem in Graphs and Its Implications. Networks 1, 113–133 (1971)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD Thesis. Department of Computer Science, University of Reading, Reading, UK (2002)Google Scholar
  15. 15.
    Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  16. 16.
    Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjective Spanning Tree Problems. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 544–551 (2001)Google Scholar
  17. 17.
    Knowles, J.D., Corne, D.W.: Enumeration of Pareto Optimal Multi-criteria Spanning Trees – A Proof of the Incorrectness of Zhou and Gen’s Proposed Algorithm. European Journal of Operational Research 143, 543–547 (2002)CrossRefMATHGoogle Scholar
  18. 18.
    Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Travelling Salesman Problem. Pric. AMS 7, 48–50 (1956)CrossRefMATHGoogle Scholar
  19. 19.
    Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)CrossRefGoogle Scholar
  20. 20.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. In: Caltech Concurrent Computation Program, C3P Report 826 (1989)Google Scholar
  21. 21.
    Prim, R.C.: Shortest Connection Networks and Some Generalizations. Bell Systems Techn. J. 36, 1389–1401 (1957)CrossRefGoogle Scholar
  22. 22.
    Prüfer, H.: Neuer Beweis Eines Satzes Uber Permutationen. Arch. Math. Phys. 27, 742–744 (1918)MATHGoogle Scholar
  23. 23.
    Ramos, R.M., Alonso, S., Sicilia, J., Gonzáles, C.: The Problem of the Biobjective Spanning Tree. European Journal of Operational Research 111, 617–628 (1998)CrossRefMATHGoogle Scholar
  24. 24.
    Raidl, G.R.: An Efficient Evolutionary Algorithm for the Degree-constrained Minimum Spanning Tree Problem. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), pp. 104–111. IEEE Press, Los Alamitos (2000)Google Scholar
  25. 25.
    Raidl, G., Julstrom, B.A.: Edge Sets: An Efficient Evolutionary Coding of Spanning Trees. IEEE Transactions on Evolutionary Computation 7(3), 225–239 (2003)CrossRefGoogle Scholar
  26. 26.
    Steiner, S., Radzik, T.: Solving the Biobjective Minimum Spanning Tree Problem using a k-best Algorithm. Technical Report TR-03-06, Department of Computer Science, King’s College London (2003)Google Scholar
  27. 27.
    Zhou, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European Journal of Operational Research 114, 141–152 (1999)CrossRefMATHGoogle Scholar
  28. 28.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel A. M. Rocha
    • 1
  • Elizabeth F. Gouvêa Goldbarg
    • 1
  • Marco César Goldbarg
    • 1
  1. 1.Depto de Informática e Matemática AplicadaUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations