Blindbuilder: A New Encoding to Evolve Lego-Like Structures

  • Alexandre Devert
  • Nicolas Bredeche
  • Marc Schoenauer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3905)


This paper introduces a new representation for assemblies of small Lego®-like elements: structures are indirectly encoded as construction plans. This representation shows some interesting properties such as hierarchy, modularity and easy constructibility checking by definition. Together with this representation, efficient GP operators are introduced that allow efficient and fast evolution, as witnessed by the results on two construction problems that demonstrate that the proposed approach is able to achieve both compactness and reusability of evolved components.


Directed Acyclic Graph Evolutionary Design Construction Plan Atomic Element Construction Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, vol. 1, pp. 35–43. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. 2.
    Bentley, P.J.: Evolutionary Design by Computers. Morgan Kaufmann Publishers Inc., San Francisco (1999)MATHGoogle Scholar
  3. 3.
    Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGAII. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Funes, P.J., Pollack, J.B.: Computer evolution of buildable objects. In: [2], Ch.17 (1999)Google Scholar
  5. 5.
    Gagné, C., Parizeau, M.: Open BEAGLE: A new C++ evolutionary computation framework. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, p. 888. Morgan Kaufmann Publishers, New York (2002)Google Scholar
  6. 6.
    Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Ecole Normale Sup´erieure de Lyon, France (1994)Google Scholar
  7. 7.
    Hornby, G.S.: Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, vol. 2, pp. 1729–1736. ACM Press, Washington (2005)Google Scholar
  8. 8.
    Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. IEEE transactions on Robotics and Automation 19(4), 709–713 (2003)CrossRefGoogle Scholar
  9. 9.
    Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, San Francisco (1999)MATHGoogle Scholar
  10. 10.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)CrossRefGoogle Scholar
  11. 11.
    Lohn, J., Hornby, G., Linden, D.: Evolutionary antenna design for a NASA spacecraft. In: Genetic Programming Theory and Practice II, ch. 18, Ann Arbor, pp. 301–315. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Luke, S., Panait, L.: Lexicographic parsimony pressure. In: GECCO-2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 829–836. Morgan Kaufmann, San Francisco (2002)Google Scholar
  13. 13.
    Peysakhov, M., Galinskaya, V., Regli, W.C.: Representation and evolution of lego-based assemblies. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, p. 1089. AAAI Press / The MIT Press (2000)Google Scholar
  14. 14.
    Rieffel, J., Pollack, J.: Automated assembly as situated development: using artificial ontogenies to evolve buildable 3-d objects. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 99–106. ACM Press, New York (2005)Google Scholar
  15. 15.
    Sims, K.: Evolving 3d morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994)CrossRefGoogle Scholar
  16. 16.
    Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition. In: Symbolic Visual Learning, pp. 81–116. Oxford University Press, Oxford (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandre Devert
    • 1
  • Nicolas Bredeche
    • 1
  • Marc Schoenauer
    • 1
  1. 1.TAO team – INRIA Futurs – LRI, Bat 490Université Paris-SudFrance

Personalised recommendations