Advertisement

Positional Independence and Recombination in Cartesian Genetic Programming

  • Xinye Cai
  • Stephen L. Smith
  • Andy M. Tyrrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3905)

Abstract

Previously, recombination (or crossover) has proved to be unbene-ficial in Cartesian Genetic Programming (CGP). This paper describes the implementation of an implicit context representation for CGP in which the specific location of genes within the chromosome has no direct or indirect influence on the phenotype. Consequently, recombination has a beneficial effect and is shown to outperform conventional CGP in the even-3 parity problem.

Keywords

Genetic Algorithm Genetic Programming Parse Tree Context Representation Linear Genetic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Miller, J.F., Job, D., Vasilev, V.K.: Principles in the evolutionary design of digital circuits—Part I. Genetic Programming and Evolvable Machines 1, 7–36 (2000)CrossRefMATHGoogle Scholar
  3. 3.
    Lones, M.A., Tyrrell, A.M.: Enzyme genetic programming. In: Kim, J.-H., Zhang, B.-T., Fogel, G., Kuscu, I. (eds.) Proc. 2001 Congress on Evolutionary Computation, vol. 2, pp. 1183–1190. IEEE Press, Los Alamitos (2001)Google Scholar
  4. 4.
    Lones, M.A., Tyrrell, A.M.: Crossover and Bloat in the Functionality Model of Enzyme Genetic Programming. In: Proc. Congress on Evolutionary Computation 2002 (CEC 2002), pp. 986–992 (2002)Google Scholar
  5. 5.
    Lones, M.A., Tyrrell, A.M.: Biomimetic Representation with Enzyme Genetic Programming. Journal of Genetic Programming and Evolvable Machines 3(2), 193–217 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Lones, M.A.: Enzyme Genetic Programming. PhD Thesis, University of York, UK (2003)Google Scholar
  7. 7.
    Lones, M.A., Tyrrell, A.M.: Modeling biological evolvability: implicit context and variation filtering in enzyme generic programming. BioSystems (2004)Google Scholar
  8. 8.
    Levenick, J.R.: Inserting introns improves genetic algorithm success rate: Taking a cue from biology. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 123–127. Morgan Kaufmann, San Francisco (1991)Google Scholar
  9. 9.
    Wu, S., Lindsay, R.K.: Empirical studies of the genetic algorithm with non-coding segments. Evolutionary Computation 3, 121–148 (1995)CrossRefGoogle Scholar
  10. 10.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Geneticprogramming: An introduction. Morgan Kaufmann, San Francisco (1998)MATHGoogle Scholar
  11. 11.
    Nordin, P.: A compiling genetic programming system that directly manipulates the machine code. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 311–331. MIT Press, Cambridge (1994)Google Scholar
  12. 12.
    Smith, P.W., Harries, K.: Code growth, explicitly defined introns, and alternative selection schemes. Evolutionary Computation 6(4), 339–360 (1998)CrossRefGoogle Scholar
  13. 13.
    Poli, R.: Evolution of graph-like programs with parallel distributed genetic programming. In: Bäck, T. (ed.) Genetic Algorithms: Proceedings of the Seventh International Conference (ICGA 1996), pp. 346–353. Morgan Kaufmann, San Francisco (1996)Google Scholar
  14. 14.
    Rosenberg, R.: Simulation of Genetic Populations with Biochemical Properties, PhD thesis (1967)Google Scholar
  15. 15.
    Schaffer, J., Morishima, A.: An adaptive crossover distribution mechanism for genetic algorithms. In: Proceedings of the Second International Conference on Genetic Algorithms and their Applications (1987)Google Scholar
  16. 16.
    Goldberg, D.E., Deb, K., Kargupta, H., George, H.: Rapid accurate optimization of difficult problems using fast messy genetic algorithms. In: Forrest, S. (ed.) Proceedings of The Fifth International Conference On Genetic Algorithms. Morgan Kaufmann, San Francisco (1993)Google Scholar
  17. 17.
    Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, University of Michigan (1997)Google Scholar
  18. 18.
    Luke, S., Hamahashi, S., Kitano, H.: Genetic. Programming. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999). Morgan Kaufmann, San Francisco (1999)Google Scholar
  19. 19.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xinye Cai
    • 1
  • Stephen L. Smith
    • 1
  • Andy M. Tyrrell
    • 1
  1. 1.Department of ElectronicsThe University of YorkHeslingtonUK

Personalised recommendations