Using Subtree Crossover Distance to Investigate Genetic Programming Dynamics

  • Leonardo Vanneschi
  • Steven Gustafson
  • Giancarlo Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3905)


To analyse various properties of the search process of genetic programming it is useful to quantify the distance between two individuals. Using operator-based distance measures can make this analysis more accurate and reliable than using distance measures which have no relationship with the genetic operators. This paper extends a recent definition of a distance measure based on subtree crossover for genetic programming. Empirical studies are presented that show the suitability of this measure to dynamically calculate the fitness distance correlation coefficient during the evolution, to construct a fitness sharing system for genetic programming and to measure genotypic diversity in the population. These experiments confirm the accuracy of the new measure and its consistency with the subtree crossover genetic operator.


Global Optimum Genetic Programming Edit Distance Share System Structural Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  2. 2.
    Gustafson, S., Ekärt, A., Burke, E.K., Kendall, G.: Problem difficulty and code growth in genetic programming. Genetic Programming and Evolvable Hardware 5(3), 271–290 (2004)CrossRefGoogle Scholar
  3. 3.
    Gustafson, S.: An Analysis of Diversity in Genetic Programming. PhD thesis, School of Computer Science and Information Technology, University of Nottingham, Nottingham, England (February 2004)Google Scholar
  4. 4.
    Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)CrossRefGoogle Scholar
  5. 5.
    McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population history. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, FL, USA, pp. 1112–1120. Morgan Kaufmann, San Francisco (1999)Google Scholar
  6. 6.
    Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: A study of diversity in multipopulation genetic programming. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 69–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ekárt, A., Németh, S.Z.: Maintaining the diversity of genetic programs. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 162–171. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann, San Francisco (1995)Google Scholar
  9. 9.
    Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness distance correlation in structural mutation genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 459–468. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, University of Lausanne, Switzerland (2004)Google Scholar
  12. 12.
    Gustafson, S., Vanneschi, L.: Operator-based distance for genetic programming: Subtree crossover distance. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtreeswapping crossover: Part i. Evolutionary Computation 11(1), 53–66 (2003)CrossRefGoogle Scholar
  14. 14.
    Punch, B., Zongker, D., Goodman, E.: The royal tree problem, a benchmark for single and multiple population genetic programming. In: Angeline, P., Kinnear, K. (eds.) Advances in Genetic Programming 2, pp. 299–316. The MIT Press, Cambridge (1996)Google Scholar
  15. 15.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leonardo Vanneschi
    • 1
  • Steven Gustafson
    • 2
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co.)University of Milano-BicoccaMilanItaly
  2. 2.School of Computer Science & ITUniversity of NottinghamNottinghamUnited Kingdom

Personalised recommendations