Geometric Crossover for Biological Sequences

  • Alberto Moraglio
  • Riccardo Poli
  • Rolv Seehuus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3905)


This paper extends a geometric framework for interpreting crossover and mutation [4] to the case of sequences. This representation is important because it is the link between artificial evolution and biological evolution. We define and theoretically study geometric crossover for sequences under edit distance and show its intimate connection with the biological notion of sequence homology.


Search Operator Binary String Edit Distance Biological Sequence Optimal Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  2. 2.
    Moraglio, A., Poli, R.: Geometric landscape of homologous crossover for syntactic trees. In: Proceedings of CEC 2005, pp. 427–434 (2005)Google Scholar
  3. 3.
    Moraglio, A., Poli, R.: Topological crossover for the permutation representation. In: Workshop on theory of representations at GECCO (2005)Google Scholar
  4. 4.
    Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD dissertation, University of New Mexico (1995)Google Scholar
  6. 6.
    Deza, M., Laurent, M.: Geometry of cuts and metrics. Springer, Heidelberg (1991)MATHGoogle Scholar
  7. 7.
    Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Platel, M.D., Clergue, M., Collard, P.: Maximum homologous crossover for linear genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 194–203. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kimura, M.: Neutral theory of molecular evolution. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alberto Moraglio
    • 1
  • Riccardo Poli
    • 1
  • Rolv Seehuus
    • 2
  1. 1.Department of Computer ScienceUniversity of EssexColchesterUK
  2. 2.Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations