Advertisement

Accelerated Verification of ECDSA Signatures

  • Adrian Antipa
  • Daniel Brown
  • Robert Gallant
  • Rob Lambert
  • René Struik
  • Scott Vanstone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3897)

Abstract

Verification of ECDSA signatures is considerably slower than generation of ECDSA signatures. This paper describes a method that can be used to accelerate verification of ECDSA signatures by more than 40% with virtually no added implementation complexity. The method can also be used to accelerate verification for other ElGamal-like signature algorithms, including DSA.

Keywords

Elliptic Curve Signature Scheme Side Information Candidate Point Elliptic Curve Digital Signature Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), American National Standard for Financial Services, American Bankers Association (January 7, 1999)Google Scholar
  2. 2.
    Dirichlet, G.L.: Verallgemeinerung eines Satzes aus der Lehrere von Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen. In: Berichtüber die zur Bekanntmachung geeigneter Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp. 93–95 (1842)Google Scholar
  3. 3.
    FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-2, US Department of Commerce/National Institute of Standards and Technology, Gaithersburg, Maryland, USA (January 27, 2000) (Includes change notice, October 5, 2001)Google Scholar
  4. 4.
    Gallant, R., Lambert, R., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)MATHGoogle Scholar
  6. 6.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  7. 7.
    Johnson, D.J., Menezes, A.J., Vanstone, S.A.: The Elliptic Curve Digital Signature Algorithm (ECDSA). International Journal of Information Security 1, 36–63 (2001)CrossRefGoogle Scholar
  8. 8.
    Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. In: CBMSNSF Regional Conference Series in Applied Mathematics. Band, vol. 50. SIAM Publications, Philadelphia (1986)Google Scholar
  9. 9.
    Nguyên, P.Q., Stehlé, D.: Low-Dimensional Lattice Basis Reduction Revisited. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338–357. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Solinas, J.: Low-Weight Binary Representations for Pairs of Integers. Centre for Applied Cryptographic Research, Corr 2001-41. University of Waterloo, Ontario, Canada (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adrian Antipa
    • 1
  • Daniel Brown
    • 1
  • Robert Gallant
    • 1
  • Rob Lambert
    • 1
  • René Struik
    • 1
  • Scott Vanstone
    • 2
  1. 1.Certicom ResearchCanada
  2. 2.Dept. of Combinatorics and OptimizationUniversity of WaterlooCanada

Personalised recommendations