Advertisement

Adapting an AI Planning Heuristic for Directed Model Checking

  • Sebastian Kupferschmid
  • Jörg Hoffmann
  • Henning Dierks
  • Gerd Behrmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3925)

Abstract

There is a growing body of work on directed model checking, which improves the falsification of safety properties by providing heuristic functions that can guide the search quickly towards short error paths. Techniques of this kind have also been made very successful in the area of AI Planning. Our main technical contribution is the adaptation of the most successful heuristic function from AI Planning to the model checking context, yielding a new heuristic for directed model checking. The heuristic is based on solving an abstracted problem in every search state. We adapt the abstraction and its solution to networks of communicating automata annotated with (constraints and effects on) integer variables. Since our ultimate goal in this research is to also take into account clock variables, as used in timed automata, our techniques are implemented inside UPPAAL. We run experiments in some toy benchmarks for timed automata, and in two timed automata case studies originating from an industrial project. Compared to both blind search and some previously proposed heuristic functions, we consistently obtain significant, sometimes dramatic, search space reductions, resulting in likewise strong reductions of runtime and memory requirements.

Keywords

Model Check Integer Variable Search State Heuristic Function Greedy Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holzmann, G.: The Spin Model Checker - Primer and Reference Manual. Addison-Wesley, Reading (2003)Google Scholar
  2. 2.
    Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi., W.: UPPAAL implementation secrets. In: Proceedings of the 7th International Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems (2002)Google Scholar
  3. 3.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with hsfspin. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology (2004)Google Scholar
  5. 5.
    Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 19–34. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Groce, A., Visser, W.: Model checking Java programs using structural heuristics. In: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis, pp. 12–21. ACM Press, New York (2002)Google Scholar
  7. 7.
    Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1–2), 5–33 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)MATHGoogle Scholar
  10. 10.
    Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs. Journal of Artificial Intelligence Research 20, 239–290 (2003)MATHGoogle Scholar
  11. 11.
    Wah, B., Chen, Y.: Subgoal partitioning and global search for solving temporal planning problems in mixed space. International Journal of Artificial Intelligence Tools 13(4), 767–790 (2004)CrossRefGoogle Scholar
  12. 12.
    Behrmann, G., Fehnker, A.: Efficient guiding towards cost-optimality in UPPAAL. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuristic for directed model checking. Technical Report 222, Albert-Ludwigs- Universität Freiburg, Institut für Informatik, Freiburg, Germany (2006), available at, http://www.informatik.uni-freiburg.de/tr/2006/Report222/
  14. 14.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. Department of Computer Science, Aalborg University, Denmark (2005)MATHGoogle Scholar
  15. 15.
    Edelkamp, S.: Generalizing the relaxed planning heuristic to non-linear tasks. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 198–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, J.: The Metric-FF planning system: Translating ignoring delete lists to numeric state variables. Journal of Artificial Intelligence Research 20, 291–341 (2003)MATHGoogle Scholar
  17. 17.
    Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal Aspects of Computing 16(2), 104–120 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Krieg-Brückner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForM Workbench, a universal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Olderog, E.R., Dierks, H.: Moby/RT: A tool for specification and verification of real-time systems. Journal of Universal Computer Science 9(2), 88–105 (2003)Google Scholar
  20. 20.
    Bloem, R., Ravi, K., Somenzi, F.: Symbolic guided search for CTL model checking. In: Proceedings of the 37th conference on Design automation, pp. 29–34. ACM Press, New York (2000)CrossRefGoogle Scholar
  21. 21.
    Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In: Proceedings of the 35th annual conference on Design automation, pp. 599–604. ACM Press, New York (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastian Kupferschmid
    • 1
  • Jörg Hoffmann
    • 2
  • Henning Dierks
    • 3
  • Gerd Behrmann
    • 4
  1. 1.University of FreiburgGermany
  2. 2.Max Planck Institute for CSSaarbrückenGermany
  3. 3.OFFISGermany
  4. 4.Aalborg UniversityDenmark

Personalised recommendations