Advertisement

Directed Model Checking with Distance-Preserving Abstractions

  • Klaus Dräger
  • Bernd Finkbeiner
  • Andreas Podelski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3925)

Abstract

In directed model checking, the traversal of the state space is guided by an estimate of the distance from the current state to the nearest error state. This paper presents a distance-preserving abstraction for concurrent systems that allows one to compute an interesting estimate of the error distance without hitting the state explosion problem. Our experiments show a dramatic reduction both in the number of states explored by the model checker and in the total runtime.

Keywords

Model Check Estimate Function Mutual Exclusion Error Distance Parallel Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.: Efficient guiding towards cost-optimality in uppaal. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bloem, R., Ravi, K., Somenzi, F.: Symbolic guided search for CTL model checking. In: Design Automation Conference, pp. 29–34 (2000)Google Scholar
  3. 3.
    Dierks, H.: Comparing model checking and logical reasoning for real-time systems. Formal Aspects of Computing 16(2), 104–120 (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. Software Tools for Technology Transfer (2003)Google Scholar
  5. 5.
    Edelkamp, S., Lluch-Lafuente, A.: Abstraction databases in theory and model checking. In: Proc. ICAPS Workshop on Connecting Planning Theory with Practice (June 2004)Google Scholar
  6. 6.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Trail-directed model checking. Electr. Notes Theor. Comput. Sci. 55(3) (2001)Google Scholar
  8. 8.
    Graf, S., Steffen, B., Lüttgen, G.: Compositional minimization of finite state systems using interface specifications. Formal Aspects of Computing 8, 607–616 (1996)CrossRefMATHGoogle Scholar
  9. 9.
    Groce, A., Visser, W.: Heuristics for model checking Java programs. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 242–245. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Kaltenbach, M., Misra, J.: A theory of hints in model checking. In: Aichernig, B.K., Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 423–438. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForM workbench, a universal development environment for formal methods. In: Wing, J., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, p. 1186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 35–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lafuente, A.L.: Directed Search for the Verification of Communication Protocols. PhD thesis, Institute of Computer Science, University of Freiburg (June 2003)Google Scholar
  14. 14.
    Larsen, K., Petterson, P., Yi, W.: Uppaal in a nutshell. STTT – International Journal on Software Tools for Technology Transfer 1(1, 2), 134–152 (1997)CrossRefMATHGoogle Scholar
  15. 15.
    Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)CrossRefMATHGoogle Scholar
  16. 16.
    Pearl, J.: Heuristics. Morgan Kaufmann, San Francisco (1983)MATHGoogle Scholar
  17. 17.
    Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Sabnani, K.K., Lapone, A.M., Uyar, M.Ü.: An algorithmic procedure for checking safety properties of protocols. IEEE Trans. Commun. 37(9), 940–948 (1989)CrossRefGoogle Scholar
  19. 19.
    Seitz, C.: Ideas about arbiters. Lambda, 10–14 (1980)Google Scholar
  20. 20.
    Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In: Design Automation Conference, pp. 599–604 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Klaus Dräger
    • 1
  • Bernd Finkbeiner
    • 1
    • 2
  • Andreas Podelski
    • 2
  1. 1.Universität des SaarlandesSaarbrückenGermany
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations