New Metrics for Static Variable Ordering in Decision Diagrams

  • Radu I. Siminiceanu
  • Gianfranco Ciardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3920)


We investigate a new class of metrics to find good variable orders for decision diagrams in symbolic state-space generation. Most of the previous work on static ordering is centered around the concept of minimum variable span, which can also be found in the literature under several other names. We use a similar concept, but applied to event span, and generalize it to a family of metrics parameterized by a moment, where the metric of moment 0 is the combined event span. Finding a good variable order is then reduced to optimizing one of these metrics, and we design extensive experiments to evaluate them. First, we investigate how the actual optimal order performs in state-space generation, when it can be computed by evaluating all possible permutations. Then, we study the performance of these metrics on selected models and compare their impact on two different state-space generation algorithms: classic breadth-first and our own saturation strategy. We conclude that the new metric of moment 1 is the best choice. In particular, the saturation algorithm seems to benefit the most from using it, as it achieves the better performance in nearly 80% of the cases.


Genetic Algorithm Variable Order Binary Decision Diagram Symbolic Model Check Order Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aziz, A., Tasiran, S., Brayton, R.K.: BDD Variable Ordering for Interacting Finite State Machines. In: 31st ACM/IEEE Design Automation Conference (DAC), San Diego, CA, June 1994, ch. 18.3, San Diego Convention Center (1994)Google Scholar
  2. 2.
    Aloul, F.A., Markov, I.L., Sakallah, K.A.: MINCE: A static global variableordering heuristic for SAT search and BDD manipulation. J. UCS 10(12), 1562–1596 (2004)Google Scholar
  3. 3.
    Borrione, D., Vidal, J.: Improving static ordering of BDDs for reachability analysis, April 29 (2002)Google Scholar
  4. 4.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)CrossRefMATHGoogle Scholar
  5. 5.
    Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comp. Surv. 24(3), 293–318 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transistion relations. In: VLSI, pp. 49–58 (1991)Google Scholar
  7. 7.
    Chauhan, P., Clarke, E., Jha, S., Kukula, J., Veith, H., Wang, D.: Using combinatorial optimization methods for quantification scheduling. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 293–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.I.: Logical and stochastic modeling with smart. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 78–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.I.: Efficient symbolic state-space construction for asynchronous systems. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 103–122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.I.: Saturation: An efficient iteration strategy for symbolic state-space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using conjunctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Geist, D., Beer, I.: Efficient model checking by automated ordering of transition relation. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 299–310. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  14. 14.
    Drechsler, R., Becker, B., Gockel, N.: A genetic algorithm for variable ordering of OBDDs. In: Int’l Workshop on Logic Synthesis, May 1995, ACM/IEEE (1995)Google Scholar
  15. 15.
    Fujita, M., Fujisawa, H., Matsunaga, Y.: Variable ordering algorithms for ordered binary decision diagrams and their evaluation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 12(1), 6–12 (1993)CrossRefGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman Press, New York (1979)MATHGoogle Scholar
  17. 17.
    Grumberg, O., Livne, S., Markovitch, S.: Learning to order BDD variables in verification. Journal of Artificial Intelligence Research 18, 83–116 (2003)MathSciNetMATHGoogle Scholar
  18. 18.
    Hung, W.N.N., Song, X.: BDD variable ordering by scatter search. In: ICCD, pp. 368–373 (2001)Google Scholar
  19. 19.
    Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi-valued decision diagrams: theory and applications. Multiple-Valued Logic 4(1–2), 9–62 (1998)MathSciNetMATHGoogle Scholar
  20. 20.
    Lu, Y., Jain, J., Clarke, E.M., Fujita, M.: Efficient variable ordering using a BDD based sampling. In: Design Automation Conference, pp. 687–692 (2000)Google Scholar
  21. 21.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)CrossRefMATHGoogle Scholar
  22. 22.
    Moon, I.-H., Kukula, J.H., Ravi, K., Somenzi, F.: To split or to conjoin: the question in image computation. In: Proceedings of the 37th Conference on Design Automation (DAC 2000), June 5–9, pp. 23–28. ACM/IEEE (2000)Google Scholar
  23. 23.
    Moreira, A.M., Déharbe, D., Costa, U.S.: Advances in BDD reduction using parallel genetic algorithms (May 2001)Google Scholar
  24. 24.
    Rudell, R.: Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In: IEEE /ACM International Conference on CAD, Santa Clara, California, November 1993, pp. 42–47. ACM/IEEE, IEEE Computer Society Press (1993)Google Scholar
  25. 25.
    Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.: Efficient BDD algorithms for FSM synthesis and verification (May 1995)Google Scholar
  26. 26.
    Wu, Y., Robert, J.: Personal communication (October 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Radu I. Siminiceanu
    • 1
  • Gianfranco Ciardo
    • 2
  1. 1.National Institute of AerospaceHampton
  2. 2.University of CaliforniaRiversideUSA

Personalised recommendations