Advertisement

Abstract

Automated termination proofs are indispensable in the mechanic verification of many program properties. While most of the recent work on automated termination proofs focuses on the construction of linear ranking functions, we develop an approach based on region graphs in which regions define subsets of variable values that have different effects on loop termination. In order to establish termination, we check whether (1) any region will be exited once it is entered, and (2) no region is entered an infinite number of times. We show the effectiveness of our proof method by experiments with Java code using a prototype implementation of our approach.

Keywords

Negative Region Model Check Positive Region Linear Inequality Integer Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 488–502. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Cousot, P.: Proving program invariance and termination by parametric abstraction, lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of 5th Symposium on Principles of Programming Languages (POPL 1978), pp. 84–97 (1978)Google Scholar
  6. 6.
    Leue, S., Mayr, R., Wei, W.: A scalable incomplete boundedness test for UML RT models. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 327–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Leue, S., Mayr, R., Wei, W.: A scalable incomplete test for buffer overflow of Promela models. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 216–233. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Leue, S., Wei, W.: Counterexample-based refinement for a boundedness test for CFSM languages. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 58–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Leue, S., Wei, W.:A region graph based approach to termination proofs. Technical report soft-06-01, University of Konstantz (2006)Google Scholar
  10. 10.
    Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Podelski, A., Rybalchenko, A.: Transition invariants. In: proceedings of 19th IEEE Symposium on Logic in Computer Science (LICS 2004), pp. 32–41. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  12. 12.
    Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Leue
    • 1
  • Wei Wei
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations