Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking

  • Bing Li
  • Fabio Somenzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3920)


It has been pointed out by McMillan that modern satisfiability (SAT) solvers have the ability to perform on-the-fly model abstraction when examining it for the existence of paths satisfying certain conditions. The issue has therefore been raised of whether explicit abstraction refinement schemes still have a role to play in SAT-based model checking. Recent work by Gupta and Strichman has addressed this issue for bounded model checking (BMC), while in this paper we consider unbounded model checking based on interpolation. We show that for passing properties abstraction refinement leads to proofs that often require examination of shorter paths. On the other hand, there is significant overhead involved in computing efficient abstractions. We describe the techniques we have developed to minimize such overhead to the point that even for failing properties the abstraction refinement scheme remains competitive.


Model Check Abstract Model Concrete Model Satisfying Assignment Symbolic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Awedh, M., Somenzi, F.: Proving more properties with bounded model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 96–108. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Brayton, R.K., et al.: VIS: A system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith, H., Wang, D.: Automated abstraction refinement for model checking large state spaces using SAT based conflict analysis. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 33–51. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstraction-refinement using ILP and machine learning. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 265–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings of the Conference on Design, Automation and Test in Europe, Paris, France, March 2002, pp. 142–149 (2002)Google Scholar
  7. 7.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe (DATE 2003), Munich, Germany, March 2003, pp. 886–891 (2003)Google Scholar
  8. 8.
    Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 112–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps. In: Proceedings of the Design Automation Conference, Anaheim, CA, June 1997, pp. 263–268 (1997)Google Scholar
  10. 10.
    Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  11. 11.
    Li, B., Somenzi, F.: Efficient computation of small abstraction refinements. In: Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, November 2004, pp. 518–525 (2004)Google Scholar
  12. 12.
    Li, B., Wang, C., Somenzi, F.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure. Software Tools for Technology Transfer 7(2), 143–155 (2005)CrossRefGoogle Scholar
  13. 13.
    Marques-Silva, J.: Improvements to the implementation of interpolant-based model checking. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 367–370. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Silva, J.P.M., Sakallah, K.A.: Grasp—a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, November 1996, pp. 220–227 (1996)Google Scholar
  19. 19.
  20. 20.
    Wang, C., Li, B., Jin, H., Hachtel, G.D., Somenzi, F.: Improving Ariadne’s bundle by following multiple threads in abstraction refinement. In: Proceedings of the International Conference on Computer-Aided Design, November 2003, pp. 408–415 (2003)Google Scholar
  21. 21.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Design, Automation and Test in Europe (DATE 2003), Munich, Germany, March 2003, pp. 880–885 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bing Li
    • 1
  • Fabio Somenzi
    • 1
  1. 1.University of Colorado at BoulderUSA

Personalised recommendations