Distributed Unfolding of Petri Nets

  • Paolo Baldan
  • Stefan Haar
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


Some recent Petri net-based approaches to fault diagnosis of distributed systems suggest to factor the problem into local diagnoses based on the unfoldings of local views of the system, which are then correlated with diagnoses from neighbouring supervisors. In this paper we propose a notion of system factorisation expressed in terms of pullback decomposition. To ensure coherence of the local views and completeness of the diagnosis, data exchange among the unfolders needs to be specified with care. We introduce interleaving structures as a format for data exchange between unfolders and we propose a distributed algorithm for computing local views of the unfolding for each system component. The theory of interleaving structures is developed to prove correctness of the distributed unfolding algorithm.


Graph Transformation Discrete Event System Local Component Local View Asynchronous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The Joy of Cats. Wiley, Chichester (1990)zbMATHGoogle Scholar
  2. 2.
    Baldan, P., Haar, S., König, B.: Distributed unfolding of petri nets. Technical Report CS-2006-1, Department of Computer Science, University Ca’ Foscari of Venice (2006)Google Scholar
  3. 3.
    Benveniste, A., Fabre, E., Jard, C., Haar, S.: Diagnosis of asynchronous discrete event systems, a net unfolding approach. IEEE Trans. on Automatic Control 48(5), 714–727 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benveniste, A., Haar, S., Fabre, E., Jard, C.: Distributed monitoring of concurrent and asynchronous systems. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 1–26. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Boel, R., van Schuppen, J.: Decentralized failure diagnosis for discrete event systems with costly communication between diagnosers. In: Proc. 6th Int. Workshop on Discrete event Systems (WODES), pp. 175–181 (2002)Google Scholar
  6. 6.
    Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic Publishers, Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fabre, E.: Factorization of unfoldings for distributed tile systems, part 1: Reduced interaction case. Technical Report 4829, INRIA (May 2003)Google Scholar
  8. 8.
    Fabre, E.: Factorization of unfoldings for distributed tile systems, part 2: General case. Technical Report 5186, INRIA (May 2004)Google Scholar
  9. 9.
    Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent and asynchronous systems. Discrete Event Dynamic Systems: theory and application 15(1), 33–84 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Genc, S., Lafortune, S.: Distributed Diagnosis of discrete-event systems using Petri net unfoldings. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 316–336. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Heljanko, K., Khomenko, V., Koutny, M.: Parallelisation of the petri net unfolding algorithm. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Mac Lane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)CrossRefzbMATHGoogle Scholar
  13. 13.
    Meseguer, J., Montanari, U., Sassone, V.: Process versus unfolding semantics for Place Transition Petri nets. Theoret. Comp. Sci. 153(1-2), 171–210 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part 1. Theoret. Comp. Sci. 13, 85–108 (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Reisig, W.: Petri Nets. An Introduction. In: EATCS Monographs on Theoretical Computer Science, vol. 4, Springer, Heidelberg (1982)Google Scholar
  16. 16.
    Ricker, S.L., van Schuppen, J.: Decentralized failure diagnosis with asynchronous communication between diagnosers. In: Proc. of the European Control Conference (2001)Google Scholar
  17. 17.
    Ricker, S.L., Rudie, K.: Distributed knowledge for communication in decentralized discrete-event systems. In: Proc. of the IEEE Conference on Decision and Control (CDC) (2001)Google Scholar
  18. 18.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  19. 19.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete-event systems. IEEE Trans. on Automatic Control 40(9), 1555–1575 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Stefan Haar
    • 2
  • Barbara König
    • 3
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItaly
  2. 2.Distribcom teamINRIA RennesFrance
  3. 3.Institut für Formale Methoden der InformatikUniversität StuttgartGermany

Personalised recommendations