Advertisement

On the Relative Expressive Power of Asynchronous Communication Primitives

  • Daniele Gorla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)

Abstract

In this paper, we study eight asynchronous communication primitives, arising from the combination of three features: arity (monadic vs polyadic data), communication medium (message passing vs shared dataspaces) and pattern-matching. Each primitive has been already used in at least one language appeared in literature; however, to uniformly reason on such primitives, we plugged them in a common framework inspired by the asynchronous π-calculus. By means of possibility/impossibility of ‘reasonable’ encodings, we compare every pair of primitives to obtain a hierarchy of languages based on their relative expressive power.

Keywords

Operational Semantic Expressive Power Operational Correspondence Label Transition System Impossibility Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acciai, L., Boreale, M.: XPi: a typed process calculus for XML messaging. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 47–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous π-calculus. Theoretical Computer Science 195(2), 291–324 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arnold, K., Freeman, E., Hupfer, S.: JavaSpaces Principles, Patterns and Practice. Addison-Wesley, Reading (1999)Google Scholar
  4. 4.
    Boudol, G.: Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis (May 1992)Google Scholar
  5. 5.
    Brown, A., Laneve, C., Meredith, G.: πduce: a process calculus with native XML datatypes. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Busi, N., Gorrieri, R., Zavattaro, G.: A process algebraic view of LINDA coordination primitives. Theoretical Computer Science 192(2), 167–199 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in π-calculus. Nordic Journal of Computing 10(2), 70–98 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the π-calculus. In: Proc. of LICS 2005, pp. 92–101. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  10. 10.
    de Boer, F., Palamidessi, C.: Embedding as a tool for language comparison. Information and Computation 108(1), 128–157 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of KLAIM-based calculi. Tech. Rep. 09/, Dip. Informatica, Univ. Roma “La Sapienza”. To appear in TCS (2004)Google Scholar
  12. 12.
    De Nicola, R., Gorla, D., Pugliese, R.: Pattern Matching over a Dynamic Network of Tuple Spaces. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 1–14. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communications. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Ford, D., Lehman, T., McLaughry, S., Wyckoff, P.: T Spaces. IBM Systems Journal, 454–474 (August 1998)Google Scholar
  15. 15.
    Gelernter, D.: Generative Communication in Linda. ACM Transactions on Programming Languages and Systems 7(1), 80–112 (1985)CrossRefMATHGoogle Scholar
  16. 16.
    Herlihy, M.: Impossibility and universality results for wait-free synchronization. In: Proc. of PODC 1988, pp. 276–290. ACM Press, New York (1988)Google Scholar
  17. 17.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  19. 19.
    Milner, R.: The polyadic π-calculus: A tutorial. In: Logic and Algebra of Specification. Series F. NATO ASI, vol. 94, Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  21. 21.
    Nestmann, U., Pierce, B.: Decoding choice encodings. Information and Computation 163, 1–59 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Palamidessi, C.: Comparing the expressive power of the synchronous and the asynchronous π-calculi. Mathematical Structures in Computer Science 13(5), 685–719 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Parrow, J.: An introduction to the π-calculus. In: Handbook of Process Algebra, pp. 479–543. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  24. 24.
    Quaglia, P., Walker, D.: On encoding pπ in mπ. In: Arvind, V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 42–51. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Sangiorgi, D.: Bisimulation in higher-order process calculi. Information and Computation 131, 141–178 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Shapiro, E.: Separating concurrent languages with categories of language embeddings. In: Proc. of 23rd STOC, pp. 198–208. ACM Press, New York (1991)Google Scholar
  27. 27.
    Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  28. 28.
    Zavattaro, G.: Towards a hierarchy of negative test operators for generative communication. In: Proc. of EXPRESS 1998. ENTCS, vol. 16 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniele Gorla
    • 1
  1. 1.Dipartimento di InformaticaUniversità di Roma “La Sapienza”Italy

Personalised recommendations