An Operational Characterization of Strong Normalization

  • Luca Paolini
  • Elaine Pimentel
  • Simona Ronchi Della Rocca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


This paper introduces the Φ-calculus, a new call-by-value version of the λ-calculus, following the spirit of Plotkin’s λβ v -calculus. The Φ-calculus satisfies some interesting properties, in particular that its set of solvable terms coincides with the set of β-strongly normalizing terms in the classical λ-calculus.


Normal Form Proper Subset Transitive Closure Reduction Rule Operational Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    van Bakel, S.: Intersection type assignment systems. Theoretical Computer Science 38(2), 246–269 (1997)MathSciNetGoogle Scholar
  2. 2.
    Barendregt, H.P.: The Lambda Calculus: its syntax and semantics. Studies in Logic and the Foundations of Mathematics (revised edition), vol. 103. North-Holland, Amsterdam (1994)MATHGoogle Scholar
  3. 3.
    Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type Theories, Normal Forms and \({\cal D}_\infty\) Lambda Models. Information and Control 72(2), 85–116 (1987)MathSciNetMATHGoogle Scholar
  4. 4.
    Coppo, M., Dezani-Ciancaglini, M.: An Extension of the Basic Functionality Theory for the λ-Calculus. Notre-Dame Journal of Formal Logic 21(4), 685–693 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Krivine, J.L.: Lambda-Calculus, Types and Models, Ellis Horwood Series in Computers and Their Applications (1993)Google Scholar
  6. 6.
    Landin, P.J.: The mechanical evaluation of expressions. Computer Journal (1964)Google Scholar
  7. 7.
    Paolini, L.: Call-by-value separability and computability. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 74–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Paolini, L., Pimentel, E., Ronchi Della Rocca, S.: Lazy strong normalization. In: ITRS 2004. ENTCS, vol. 136, pp. 103–116 (2005)Google Scholar
  9. 9.
    Paolini, L., Ronchi Della Rocca, S.: Call-by-value Solvability. Theoretical Informatics and Applications 33(6), 507–534 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Paolini, L., Ronchi Della Rocca, S.: The Parametric Parameter Passing λ-calculus. Information and Computation 189(1), 87–106 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1, 125–159 (1975)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: To, H.B. (ed.) Curry: essays on combinatory logic, lambda calculus and formalism, pp. 561–577. Academic Press, London (1980)Google Scholar
  13. 13.
    Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-calculus. A meta-model for computation. In: Texts in Theoretical Computer Science: an EATCS Series, Springer, Berlin (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Paolini
    • 1
  • Elaine Pimentel
    • 2
  • Simona Ronchi Della Rocca
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly
  2. 2.Departamento de MatemáticaBrazil

Personalised recommendations