Abstract
Interpolation results are investigated for various types of formulae. By shifting the focus from syntactic to semantic interpolation, we generate, prove and classify a series of interpolation results for first-order logic. A few of these results non-trivially generalize known interpolation results. All the others are new.
Supported by NSF grants CCF-0234524, CCF-044851, CNS-0509321.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Universal Algebra, vol. 29, pp. 13–35 (1982)
Barwise, J., Feferman, J.: Model-Theoretic Logics. Springer, Heidelberg (1985)
Bergstra, J., Heering, J., Klint, P.: Module algebra. Journal of the Association for Computing Machinery 37(2), 335–372 (1990)
Borzyszkowski, T.: Generalized interpolation in CASL. Inf. Process. Lett. 76(1-2), 19–24 (2000)
Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Computer Science 286(2), 197–245 (2002)
Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)
Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen Theorem. Journal of Symbolic Logic 22, 250–268 (1957)
Diaconescu, R.: Grothendieck institutions. Appl. Categorical Struct. 10(4), 383–402 (2002)
Diaconescu, R.: An institution-independent proof of Craig interpolation theorem. Studia Logica 77(1), 59–79 (2004)
Diaconescu, R.: Interpolation in Grothendieck institutions. Theoretical Computer Science 311, 439–461 (2004)
Diaconescu, R., Futatsugi, K.: CafeOBJ Report. AMAST Series in Computing, vol. 6. World Scientific, Singapore (1998)
Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theoretical Computer Science 285, 289–318 (2002)
Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularization. In: Huet, G., Plotkin, G. (eds.) Logical Environments, Cambridge, pp. 83–130 (1993)
Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information Processing Letters 74(1–2), 65–71 (2000)
Gallier, J.H.: Logic for computer science. Foundations of automatic theorem proving. Harper & Row (1986)
Goguen, J.: Types as theories. In: Topology and Category Theory in Computer Science, Oxford, pp. 357–390 (1991)
Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)
Goguen, J., Roşu, G.: Composing hidden information modules over inclusive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004)
Bicarregui, D.G.J., Dimitrakos, T., Maibaum, T.: Interpolation in practical formal development. Logic Journal of the IGPL 9(1), 231–243 (2001)
Monk, J.D.: Mathematical Logic. Springer, Heidelberg (1976)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)
Németi, I., Sain, I.: Cone-implicational subcategories and some Birkhoff-type theorems. In: Universal Algebra, vol. 29, pp. 535–578 (1982)
Oppen, D.C.: Complexity, convexity and combinations of theories. Theoretical Computer Science 12, 291–302 (1980)
Popescu, A., Şerbănuţă, T., Roşu, G.: A semantic approach to interpolation. Technical Report UIUCDCS-R-2005-2643, University of Illinois at Urbana-Champaign
Roşu, G., Goguen, J.: On equational Craig interpolation. Journal of Universal Computer Science 6, 194–200 (2000)
Rodenburg, P.H.: Interpolation in conditional equational logic. Fundam. Inform. 15(1), 80–85 (1991)
Rodenburg, P.H.: A simple algebraic proof of the equational interpolation theorem. Algebra Universalis 28, 48–51 (1991)
Rodenburg, P.H., van Glabbeek, R.: An interpolation theorem in equational logic. Technical Report CS-R8838, CWI (1988)
Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Control 76, 165–210 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Popescu, A., Şerbănuţă, T.F., Roşu, G. (2006). A Semantic Approach to Interpolation. In: Aceto, L., Ingólfsdóttir, A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2006. Lecture Notes in Computer Science, vol 3921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11690634_21
Download citation
DOI: https://doi.org/10.1007/11690634_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33045-5
Online ISBN: 978-3-540-33046-2
eBook Packages: Computer ScienceComputer Science (R0)