Propositional Dynamic Logic with Recursive Programs

  • Christof Löding
  • Olivier Serre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


We extend the propositional dynamic logic PDL of Fischer and Ladner with a restricted kind of recursive programs using the formalism of visibly pushdown automata (Alur, Madhusudan 2004). We show that the satisfiability problem for this extension remains decidable, generalising known decidability results for extensions of PDL by non-regular programs.


Regular Expression Atomic Proposition Acceptance Condition Tree Automaton Recursive Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global program flows. In: Proceedings of POPL 2006 (to appear 2006)Google Scholar
  2. 2.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of STOC 2004, pp. 202–211. ACM, New York (2004)Google Scholar
  4. 4.
    Danecki, R.: Nondeterministic propositional dynamic logic with intersection is decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  5. 5.
    Fischer, M.J., Ladner, R.E.: Propositional dyncamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Harel, D., Kaminsky, M.: Strengthened results on nonregular PDL. Technical Report MCS99-13, Weizmann Institute of Science (1999)Google Scholar
  7. 7.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: Foundations of Computing, MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Harel, D., Raz, D.: Deciding properties of nonregular programs. SIAM Journal on Computing 22(4), 857–874 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Harel, D., Singerman, E.: More on nonregular PDL: Expressive power, finite models, fibonacci programs. In: ISTCS: 3rd Israeli Symposium on the Theory of Computing and Systems (1995)Google Scholar
  10. 10.
    Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Lutz, C.: PDL with intersection and converse is decidable. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 413–427. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Parikh, R.: The logic of games an its applications. Annals of discrete mathematics 24, 111–140 (1985)MathSciNetMATHGoogle Scholar
  13. 13.
    Park, D.: Finiteness is μ-ineffable. Theoretical Computer Science 3, 173–181 (1976)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Streett, R.: Propositional dynamic logic of looping and converse is elementary decidable. Information and Control 54, 121–141 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logic of programs. Journal of Computer and System Sciences 32, 183–221 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christof Löding
    • 1
  • Olivier Serre
    • 2
  1. 1.RWTH AachenGermany
  2. 2.LIAFAFrance

Personalised recommendations