Advertisement

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics

  • Gerald Lüttgen
  • Walter Vogler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)

Abstract

A key problem in mixing operational (e.g., process–algebraic) and declarative (e.g., logical) styles of specification is how to deal with inconsistencies arising when composing processes under conjunction. This paper introduces a conjunction operator on labelled transition systems capturing the basic intuition of “a and b = false”, and considers a naive preorder that demands that an inconsistent specification can only be refined by an inconsistent implementation.

The main body of the paper is concerned with characterising the largest precongruence contained in the naive preorder. This characterisation will be based on a novel semantics called ready–tree semantics, which refines ready traces but is coarser than ready simulation. It is proved that the induced ready–tree preorder is compositional and fully–abstract, and that the conjunction operator indeed reflects conjunction.

The paper’s results provide a foundation for, and an important step towards a unified framework that allows one to freely mix operators from process algebras and temporal logics.

Keywords

Temporal Logic Label Transition System Process Algebra Ready Tree Tree Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Ready-trace semantics for concrete process algebra with the priority operator. Computer J 30(6), 498–506 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier Science, Amsterdam (2001)MATHGoogle Scholar
  3. 3.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cleaveland, R., Lüttgen, G.: A semantic theory for heterogeneous system design. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 312–324. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Cleaveland, R., Lüttgen, G.: A logical process calculus. In: EXPRESS 2002. ENTCS, vol. 68(2), Elsevier Science, Amsterdam (2002)Google Scholar
  7. 7.
    van Glabbeek, R.: The linear time – branching time spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Graf, S., Sifakis, J.: A logic for the description of non-deterministic programs and their properties. Information and Control 68(1–3), 254–270 (1986)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  10. 10.
    Lamport, L.: The temporal logic of actions. TOPLAS 16(3), 872–923 (1994)CrossRefGoogle Scholar
  11. 11.
    Lüttgen, G., Vogler, W.: Conjunction on processes: Full-abstraction via ready-tree semantics. Tech. Rep. YCS-2005-396, Dept. of Comp. Sci., Univ. of York, UK (2005)Google Scholar
  12. 12.
    De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. TCS 34, 83–133 (1983)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Olderog, E.R.: Nets, Terms and Formulas. In: Cambridge Tracts in Theoretical Computer Science, vol. 23, Cambridge Univ. Press, Cambridge (1991)Google Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE Computer Society Press, Los Alamitos (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerald Lüttgen
    • 1
  • Walter Vogler
    • 2
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.Institut für InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations