On Metric Temporal Logic and Faulty Turing Machines

  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


Metric Temporal Logic (MTL) is a real-time extension of Linear Temporal Logic that was proposed fifteen years ago and has since been extensively studied. Since the early 1990s, it has been widely believed that some very small fragments of MTL are undecidable (i.e., have undecidable satisfiability and model-checking problems). We recently showed that, on the contrary, some substantial and important fragments of MTL are decidable [19,20]. However, until now the question of the decidability of full MTL over infinite timed words remained open.

In this paper, we settle the question negatively. The proof of undecidability relies on a surprisingly strong connection between MTL and a particular class of faulty Turing machines, namely ‘insertion channel machines with emptiness-testing’.


Temporal Logic Turing Machine Global State Linear Temporal Logic Linear Temporal Logic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulla, P., Jonsson, B.: Undecidable verification problems with unreliable channels. Inf. Comput. 130, 71–90 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity results for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43, 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, Springer, Heidelberg (1992)Google Scholar
  6. 6.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comput. 104, 35–77 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41, 181–204 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect channels. Inf. Comput. 124, 20–31 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Henzinger, T.A.: The Temporal Specification and Verification of Real-Time Systems. PhD thesis, Stanford University, Tech. rep. STAN-CS-91-1380 (1991)Google Scholar
  12. 12.
    Henzinger, T.A.: It’s about time: Real-time logics reviewed. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  17. 17.
    Lasota, S., Walukiewicz, I.: Personal communication (2005)Google Scholar
  18. 18.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Proc. LICS, IEEE Press, Los Alamitos (2005)Google Scholar
  20. 20.
    Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable (submitted 2005)Google Scholar
  21. 21.
    Raskin, J.-F., Schobbens, P.-Y.: State-clock logic: A decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Schneider, K.: Verification of Reactive Systems. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Inf. Process. Lett. 83(5), 251–261 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Oxford University Computing LaboratoryUK

Personalised recommendations