Processes for Adhesive Rewriting Systems

  • Paolo Baldan
  • Andrea Corradini
  • Tobias Heindel
  • Barbara König
  • Paweł Sobociński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


Rewriting systems over adhesive categories have been recently introduced as a general framework which encompasses several rewriting-based computational formalisms, including various modelling frameworks for concurrent and distributed systems. Here we begin the development of a truly concurrent semantics for adhesive rewriting systems by defining the fundamental notion of process, well-known from Petri nets and graph grammars. The main result of the paper shows that processes capture the notion of true concurrency—there is a one-to-one correspondence between concurrent derivations, where the sequential order of independent steps is immaterial, and (isomorphism classes of) processes. We see this contribution as a step towards a general theory of true concurrency which specialises to the various concrete constructions found in the literature.


Isomorphism Class Direct Derivation Type Object Graph Transformation Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baldan, P.: Modelling Concurrent Computations: from Contextual Petri Nets to Graph Grammars. PhD thesis, Dipartimento di Informatica, Università di Pisa (2000)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: an unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 83–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Baldan, P., Corradini, A., Montanari, U.: Concatenable graph processes: relating processes and derivation traces. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Baldan, P., Corradini, A., Montanari, U.: Unfolding and Event Structure Semantics for Graph Grammars. In: Thomas, W. (ed.) ETAPS 1999 and FOSSACS 1999. LNCS, vol. 1578, pp. 73–89. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26, 241–265 (1996)MathSciNetMATHGoogle Scholar
  7. 7.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars. In: Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Mathematical Structures in Computer Science 1, 361–404 (1991)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods in System Design 20(20), 285–310 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Information and Control 57, 125–147 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Mathematical Structures in Computer Science 11(5), 637–688 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39(2), 511–546 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht (1993)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Corradini
    • 2
  • Tobias Heindel
    • 3
  • Barbara König
    • 3
  • Paweł Sobociński
    • 4
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.Institut für Formale Methoden der InformatikUniversität StuttgartGermany
  4. 4.Computer LaboratoryUniversity of CambridgeUnited Kingdom

Personalised recommendations