Advertisement

Abstract

We study logics and games over dynamically changing structures. Van Benthem’s sabotage modal logic consists of modal logic with a cross-model modality referring to submodels from which a transition has been removed. We add constructors for forming least and greatest monadic fixed-points to that logic and obtain the sabotage μ-calculus. We introduce backup parity games as an extension of standard parity games where in addition, both players are able to delete edges of the arena and to store, resp., restore the current appearance of the arena by use of a fixed number of registers. We show that these games serve as model checking games for the sabotage μ-calculus, even if the access to registers follows a stack discipline. The problem of solving the games with restricted register access turns out to be PSPACE-complete while the more general games without a limited access become EXPTIME-complete (for at least three registers).

Keywords

Model Check Modal Logic Polynomial Space Kripke Structure Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity II. Springer, Heidelberg (1990)CrossRefMATHGoogle Scholar
  2. 2.
    van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bernholtz, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 142–155. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS 1991, pp. 368–377 (1991)Google Scholar
  5. 5.
    Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 531–540. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Rohde, P.: On Games and Logics over Dynamically Changing Structures. Technical report submitted as dissertation thesis at RWTH Aachen, Available under (2005), www-i7.informatik.rwth-aachen.de/~rohde/thesis.pdf
  11. 11.
    Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games. SIAM Journal on Computing 8, 151–174 (1979)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Vardi, M.Y.: The complexity of relational query languages. In: STOC 1983, pp. 137–146 (1982)Google Scholar
  13. 13.
    Vardi, M.Y.: On the complexity of bounded-variable queries. In: PODS 1995, pp. 266–276 (1995)Google Scholar
  14. 14.
    Walukiewicz, I.: Monadic second-order logic on tree-like structures. TCS 275, 311–346 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philipp Rohde
    • 1
  1. 1.Informatik VIIRWTH AachenGermany

Personalised recommendations