On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation

  • Taolue Chen
  • Wan Fokkink
  • Sumit Nain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


We prove that the equational theory of the process algebra BCCSP modulo completed simulation equivalence does not have a finite basis. Furhermore, we prove that with a finite alphabet of actions, the equational theory of BCCSP modulo ready simulation equivalence does not have a finite basis. In contrast, with an infinite alphabet, the latter equational theory does have a finite basis.


Equational Theory Label Transition System Process Algebra Finite Alphabet Closed Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aceto, L., Fokkink, W.J., van Glabbeek, R.J., Ingolfsdottir, A.: Nested semantics over finite trees are equationally hard. Information and Computation 191(2), 203–232 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blom, S.C.C., Fokkink, W.J., Nain, S.: On the axiomatizability of ready traces, ready simulation and failure traces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 109–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Fokkink, W.J., Luttik, S.P.: An ω-complete equational specification of interleaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Fokkink, W.J., Nain, S.: On finite alphabets and infinite bases: From ready pairs to possible worlds. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 182–194. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Fokkink, W.J., Nain, S.: A finite basis for failure semantics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 755–765. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    van Glabbeek, R.J.: The linear time – branching time spectrum I. The semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  7. 7.
    Groote, J.F.: A new strategy for proving ω-completeness with applications in process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Lin, H.: PAM: A process algebra manipulator. Formal Methods in System Design 7(3), 243–259 (1995)CrossRefGoogle Scholar
  9. 9.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  10. 10.
    Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Taolue Chen
    • 1
    • 2
  • Wan Fokkink
    • 1
    • 3
  • Sumit Nain
    • 4
  1. 1.Department of Software EngineeringCWIAmsterdamThe Netherlands
  2. 2.State Key Laboratory of Novel Software TechnologyNanjing UniversityNanjing, JiangsuP.R. China
  3. 3.Department of Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.Department of Computer ScienceRice UniversityHoustonUSA

Personalised recommendations