Advertisement

Privately Retrieve Data from Large Databases

  • Qianhong Wu
  • Yi Mu
  • Willy Susilo
  • Fangguo Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3903)

Abstract

We propose a general efficient transformation from Private Information Retrieval (PIR) to Symmetrically Private Information Retrieval (SPIR). Unlike existing schemes using inefficient zero-knowledge proofs, our transformation exploits an efficient construction of Oblivious Transfer (OT) to reduce the communication complexity which is a main goal of PIR and SPIR. The proposed SPIR enjoys almost the same communication complexity as the underlying PIR. As an independent interest, we propose a novel homomorphic public-key cryptosytem derived from Okamoto-Uchiyama cryptosystem and prove its security. The new homomorphic cryptosystem has an additional useful advantage to enable one to encrypt messages in changeable size with fixed extension bits. Based on the proposed cryptosystem, the implementation of PIR/SPIR makes PIR and SPIR applicable to large databases.

Keywords

Communication Complexity Oblivious Transfer Modular Exponentiation Private Information Retrieval Private Information Retrieval Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for large r. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Beimel, A., Ishai, Y., Kushilevitz, E., Rayomnd, J.-F.: Breaking the O(n1/(2k−1)) barrier for information-theoretic private information retrieval. In: Proc. of the 43rd IEEE Sym. on Found. of Comp. Sci. (2002)Google Scholar
  4. 4.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: Proc. of 36th FOCS (1995)Google Scholar
  5. 5.
    Chang, Y.: Single Database Private Information Retrieval with Logarithmic Communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cachin, C., Micali, S., Stadler, M.: Computational Private Information Retrieval with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Proc. of PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: Proc. of FOCS 1997, pp. 364–373 (1997)Google Scholar
  9. 9.
    Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Mishra, S.K., Sarkar, P.: Symmetrically Private Information Retrieval. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 225–236. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Technical Report TR- 81, Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  14. 14.
    Stern, J.P.: A New and Efficient All-or-nothing Disclosure of Secrets Protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    De Santis, A., Persiano, G.: Zero-Knowledge Proofs of Knowledge Without Interaction. In: Proc. of FOCS 1992, pp. 427–436. IEEE Press, Los Alamitos (1992)Google Scholar
  16. 16.
    Tzeng, W.: Efficient 1-out-of-n Oblivious Transfer Schemes. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 159–171. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qianhong Wu
    • 1
  • Yi Mu
    • 1
  • Willy Susilo
    • 1
  • Fangguo Zhang
    • 2
  1. 1.Center for Information Security Research, School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia
  2. 2.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations