Trojan Horse Attack Strategy on Quantum Private Communication

  • Jinye Peng
  • Guangqiang He
  • Jin Xiong
  • Guihua Zeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3903)


Fragility of quantum private communication based on Einstein-Podosky-Rosen (EPR) pair as pre-shared key against trojan horse attack strategy is investigated in detail. To prevent this kind of attack strategy, the EPR pairs employed in the quantum private communication is transferred into non-orthogonal entangled states by employing unitary transformations which are actually rotation operations on the quantum signal. Analysis show that the improved scheme is robust against the trojan horse attack strategy without reducing the security against other kinds of attack strategies.


Quantum Channel Feedback Information Quantum Cryptography Trojan Horse Legitimate User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schneier, B.: Applied Cryptography:protocols, algorithms, and source code in C. John Wiley & Sons, Inc., Chichester (1994)Google Scholar
  2. 2.
    Wiesner, S.: Conjugate coding. Sigact News 15, 78–98 (1983)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Advances in Cryptology: Proceedings of Crypto 1984, August 1984, p. 475. Springer, Heidelberg (1984)Google Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography bases on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptology 5, 3–28 (1992)MATHCrossRefGoogle Scholar
  6. 6.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lo, H.-K., Chau, H.F.: Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 283, 2050–2057 (1999)CrossRefGoogle Scholar
  8. 8.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74, 145–195 (2002)CrossRefGoogle Scholar
  9. 9.
    Larsson, J. (November 13, 2001),
  10. 10.
    Zhang, Y., Li, C., Guo, G.: Phys. Rev. A  64, 24302 (2001)Google Scholar
  11. 11.
    Leung, D.W.: Quantun vernam cipher. Quantum information and computation 2, 14–30 (2002)MathSciNetGoogle Scholar
  12. 12.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)CrossRefGoogle Scholar
  13. 13.
    Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jinye Peng
    • 1
  • Guangqiang He
    • 2
  • Jin Xiong
    • 2
  • Guihua Zeng
    • 2
  1. 1.School of Information Science and TechnologyNorthwest UniversityXi’anChina
  2. 2.Department of Electronic EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations