A Novel Dynamic Immunization Strategy for Computer Network Epidemics

  • Zhifei Tao
  • Hai Jin
  • Zongfen Han
  • En Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3903)


Current immunization strategies for computer network epidemics are based on the assumption that the vaccines are ready before the epidemics, and it is obviously unrealistic in computer network. Our study of the targeted immunization on Susceptible-Infected-Recovered (SIR) epidemiological model shows the efficiency of the targeted immunization decreases sharply with time gap between the vaccines and epidemics considered. We propose a two-phase propagating immunization strategy to suppress the computer network epidemics by the spreading of vaccines. During the two phases, the vaccines will go up the degree sequence in phase one and down the sequence in phase two, so the important nodes are protected and the revisit rate of the vaccines is reduced. The simulation results on the extended SIR model indicate our strategy can suppress the epidemics as effectively as the fastest anti-worm strategy, with an obvious lower spreading cost.


Traffic Congestion Scale Free Network Degree Sequence Immunization Strategy Computer Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in Your Spare Time. In: Proc. of the 11th USENIX Security Symposium (Security 2002), San Francisco (August 2002)Google Scholar
  4. 4.
  5. 5.
    Anderson, R.M., May, R.M.: Infectious Diseases in Humans. Oxford University Press, Oxford (1992)Google Scholar
  6. 6.
    May, R.M., Lloyd, A.L.: Infection Dynamics on Scale-free Networks. Physical Review E 64 (2001)Google Scholar
  7. 7.
    Dezso, Z., Barabasi, A.-L.: Halting Viruses in Scale-free Networks. Physical Review E 65, 055103 (2002)Google Scholar
  8. 8.
    Pastor-Satorras, R., Vespignani, A.: Epidemics and Immunization in Scale-free Networks. In: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Berlin (2002)Google Scholar
  9. 9.
    Chen, L.-C., Carley, K.M.: The Impact of Countermeasure Spreading on the Propagation of Computer Viruses. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 34(2), 823–833 (2004)CrossRefGoogle Scholar
  10. 10.
    Castaneda, F., Sezer, E.C., Xu, J.: WORM vs. WORM: Preliminary Study of an Active Counter-Attack Mechanism. In: Proc. 2004 ACM Workshop Rapid Malcode (WORM 2004), pp. 83–93. ACM Press, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Yook, S.-H., Jeong, H., Barabási, A.-L.: Modeling the Internet’s large-scale Topology. Proceedings of the National Academy of Sciences 99, 13382–13386 (2002)CrossRefGoogle Scholar
  12. 12.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Ebel, H., Mielsch, L.-I., Bornholdt, S.: Scale-free topology of e-mail networks. Physical Review E 66, 035103 (2002)Google Scholar
  14. 14.
    Guardiola, X., Guimera, R., Arenas, A., Diaz-Guilera, A., Streib, D.: Macro- and microstructure of trust networks. LAN Amaral (2002), LANL archive: cond-mat/0206240 Google Scholar
  15. 15.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)CrossRefGoogle Scholar
  16. 16.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42, 599–653 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the Internet to random breakdown. Physics Review Letter 85, 4626 (2000)CrossRefGoogle Scholar
  19. 19.
    Pastor-Satorras, R., Vespignani, A.: Epidemic Spreading in scale-free Networks. Physics Review Letter 86, 3200 (2001)CrossRefGoogle Scholar
  20. 20.
    Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Physical Review E 65, 036104 (2002)Google Scholar
  21. 21.
    Lloyd, A.L., May, R.M.: How Viruses Spread among Computers and People. Science 292, 1316 (2001)CrossRefGoogle Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhifei Tao
    • 1
  • Hai Jin
    • 1
  • Zongfen Han
    • 1
  • En Cheng
    • 1
  1. 1.Cluster and Grid Computing LabHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations