Adaptive Scheduling in Wireless Sensor Networks

  • A. G. Ruzzelli
  • M. J. O’Grady
  • G. M. P. O’Hare
  • R. Tynan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3854)


As the number of Wireless Sensor Networks (WSNs) applications is anticipated to grow substantially in coming years, new and radical strategies for effectively managing such networks will be needed. One possibility involves endowing the network with an autonomic capability to dynamically adapt itself to the prevailing network operating conditions, even while communications sessions are active. This may involve the network adapting itself either partially or completely. The approach suggested in this paper proposes that a suite of intelligent agents autonomously monitor the various network nodes and, depending on the status of certain parameters, actively intervene to alter the scheduling mechanism used, thus ensuring continuous operation and stability of the network together with an an improved performance yield.


Sensor Node Wireless Sensor Network Medium Access Control Mobile Agent Medium Access Control Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ruzzelli, A., Evers, L., Dulman, S., Hoesel, L.V., Havinga, P.: On the design of an energy-efficient low-latency integrated protocol for distributed mobile sensor networks. In: IWWAN International Workshop on Wireless Ad hoc Networks (2004)Google Scholar
  2. 2.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. In: Twenty-First AnnualJoint conference of the IEEE Computer and Communication Societies (INFOCOM), vol. 3, pp. 1567–1576 (2002)Google Scholar
  3. 3.
    Rajendran, Obrazka, Garcia-Luna-Aceves: Energy-efficient, collision-free medium access control for wireless sensor netwoks. In: Conference on Embedded Networked Sensor System, pp. 181–192 (2003)Google Scholar
  4. 4.
    Dam, T.V., Langendoen, K.: An adaptive energy efficient mac protocol for wireless sensor networks. ACM Sensys (2003)Google Scholar
  5. 5.
    Hoiydi, A.E., Decotignie, J.: Wisemac: An ultra low power mac protocol for multi-hop wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 18–31. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Johnson, D.B., Maltz, D.A.: Dinamic source routing in ad hoc wireless networks. In: Mobile computing, vol. 353. Kluwer Academic publishers, Dordrecht (1996)Google Scholar
  7. 7.
    Akan, O.B., Akyildiz, I.F., Sankarasubramaniam, Y.: Event-to-sink reliable transport in wireless sensor networks. IEEE-ACM Transactions on Networking (2004)Google Scholar
  8. 8.
    Lu, G., Krishnamachari, B., Cauligi, Raghavendra, S.: An adaptive energy-efficient and low-latency mac for data gathering in sensor networks. In: International workshop on Alghoritms for Wireless, Mobile, ad Hoc Sensor Networks (WMAN 2004) (2004)Google Scholar
  9. 9.
    Hoesel, V., Chatterjea, H.: An energy efficient medium access protocol for wireless sensor networks. In: ProRISC 2003 (2003)Google Scholar
  10. 10.
    Bieszczad, A., Pagurek, B., White, T.: Mobile agents for network management. IEEE Communications Surveys 1 (1998)Google Scholar
  11. 11.
    Haque, N., Jennings, N.R., Moreau, L.: Resource allocation in communication networks using market-based agents. International Journal of Knowledge Based Systems (2005)Google Scholar
  12. 12.
    Wang, Y., Cuthbert, L., Bigham, J.: Intelligent radio resource management for ieee 802.11 wlan. In: IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, Georgia, USA (2004)Google Scholar
  13. 13.
    Kevin Mayer, K.T., Ellis, K.: Cattle health monitoring using wireless sensor networks. In: The 2nd IASTED International Conference on Communication and Computer Networks, Cambridge, Massachusetts, pp. 8–10 (2004)Google Scholar
  14. 14.
    Ruzzelli, A., Tynan, R., O’Hare, G.M.P.: A low-latency routing protocol for wireless sensor networks. In: SENET 2005 Advanced Industrial Conference on Wireless Technologies, Montreal (to appear, 2005)Google Scholar
  15. 15.
    Rao, A.S., Georgeff, M.: Modelling rational agents within a bdi architecture. In: Principles of Knowledge Representation and Reasoning, San Mateo, CA (1991)Google Scholar
  16. 16.
    O’Hare, G.M.P.: Agent Factory: An Environment for the Fabrication of Multi-Agent Systems. In: Foundations of Distributed Artificial Intelligence. John Wiley and Sons, Chichester (1996)Google Scholar
  17. 17.
    Collier, R., O’Hare, G.M.P., Lowen, T., Rooney, C.: Beyond prototyping in the valley of the agents. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, p. 383. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. G. Ruzzelli
    • 2
  • M. J. O’Grady
    • 1
  • G. M. P. O’Hare
    • 2
  • R. Tynan
    • 2
  1. 1.Adaptive Information Cluster (AIC), Department of Computer ScienceUniversity College Dublin (UCD)Belfield, Dublin 4Ireland
  2. 2.Practice & Research in Intelligent Systems & Media (PRISM) Laboratory, Department of Computer ScienceUniversity College Dublin (UCD)Belfield, Dublin 4Ireland

Personalised recommendations