Autonomous Network Equipments

  • Dominique Gaïti
  • Guy Pujolle
  • Mikaël Salaun
  • Hubert Zimmermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3854)


IP networks are now well established. However, control, manage- ment and optimization schemes are provided in a static and basic way. Network control and management schemes using an autonomy based technology offer a new way to master quality of service, security and mobility management. This new paradigm allows a dynamic and intelligent control of the equipment in a local manner, a global network control in a cooperative manner, a more powerful network management, and a better guaranty of all vital functionalities like end to end quality of service and security. In this paper, we provide a way to implement such a paradigm through the use of the agent and multi agent concept. A testbed of an architecture based on autonomous network equipment has been developed. This autonomous architecture is able to optimize the quality of service through the networks.


Multiagent System Mobile Agent Internet Protocol Policy Decision Point Network Equipment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Castro, M., Merghem, L., Gaiti, D., Mhamed, A.: The Basis for an Adaptive IP QoS Management, Special Issue: Internet Technology IV. IEICE Transactions on Communications E87-B(3), 564–572 (2004)Google Scholar
  2. 2.
    Proceedings of the first WAC (Workshop on Autonomic Communications), Berlin (October 2004)Google Scholar
  3. 3.
    Verma, D.C.: Simplifying Network administration using policy-based management. IEEE Network 16(2) (2002)Google Scholar
  4. 4.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman (1999)Google Scholar
  5. 5.
    Bazzan, A.L.C., Wahle, J., Klügl, F.: Agents in Traffic Modelling - From Reactive to Social Behaviour. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 303–307. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Moukas, A., Chandrinos, K., Maes, P.: Trafficopter A Distributed Collection System for Traffic Information. In: Klusch, M., Weiss, G. (eds.) CIA 1998. LNCS (LNAI), vol. 1435, pp. 34–43. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Doran, J.: Agent-Based Modelling of EcoSystems for Sustainable Resource Management. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS, vol. 2086, p. 383. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Drogoul, A., Corbara, B., Fresneau, D.: MANTA: New experimental results on the emergence of (artificial) ant societies. In: Gilbert, N., Conte, R. (eds.) Artificial Societies: the computer simulation of social life. UCL Press, London (1995)Google Scholar
  9. 9.
    Bensaid, L., Drogoul, A., Bouron, T.: Agent-Based Interaction Analysis of Consumer Behavior. In: AAMAS 2002, Bologna, Italy (July 2002)Google Scholar
  10. 10.
    Minar, N., Kramer, K.H., Maes, P.: Cooperating Mobile Agents for Dynamic Network Routing. In: Software Agents for Future Communication Systems, ch. 12, pp. 287–304. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Roychoudhuri, R., et al.: Topology discovery in ad hoc Wireless Networks Using Mobile Agents. In: Horlait, E. (ed.) MATA 2000. LNCS, vol. 1931, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Sigel, E., et al.: Application of Ant Colony Optimization to Adaptive Routing in LEO Telecommunications Satellite Network. Annals of Telecommunications 57(5-6), 520–539 (2002)Google Scholar
  13. 13.
    White, T., et al.: Distributed Fault Location in Networks using Learning Mobile Agents. In: Nakashima, H., Zhang, C. (eds.) PRIMA 1999. LNCS (LNAI), vol. 1733, pp. 182–196. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Bodanese, E.L., Cuthbert, L.G.: A Multi-Agent Channel Allocation Scheme for Cellular Mobile Networks. In: ICMAS 2000, pp. 63–70. IEEE Computer Society press, Los Alamitos (2000)Google Scholar
  15. 15.
    Wooldridge, M.: Intelligent Agents. In: Multiagent Systems: a Modern Approach to Distributed Artificial Intelligence, pp. 27–77. Weiss G. Press (1999)Google Scholar
  16. 16.
    Müller, J.P., Pischel, M.: Modelling Reactive Behaviour in Vertically Layered Agent Architecture. In: ECAI 1994, Amsterdam, Netherlands, pp. 709–713. John Wiley & Sons, Chichester (1994)Google Scholar
  17. 17.
    Merghem, L., Gaïti, D., Pujolle, G.: On Using Agents in End to End Adaptive Monitoring. In: Marshall, A., Agoulmine, N. (eds.) MMNS 2003. LNCS, vol. 2839, pp. 422–435. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Gaïti, D., Pujolle, G.: Performance management issues in ATM networks: traffic and congestion control. IEEE/ACM Transactions on Networking 4(2) (1996)Google Scholar
  19. 19.
    Gaïti, D., Merghem, L.: Network modeling and simulation: a behavioral approach. In: Smartnet conference, Finland. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  20. 20.
    Merghem, L., Gaïti, D.: Behavioural Multi-agent simulation of an Active Telecommunication Network. In: STAIRS 2002, France, pp. 217–226. IOS Press, Amsterdam (2002)Google Scholar
  21. 21.
    Pujolle, G., Chaouchi, H., Gaïti, D.: Beyond TCP/IP: A Context Aware Architecture. In: Net-Con 2004, Palma, Spain. Kluwer Publisher, Dordrecht (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dominique Gaïti
    • 1
  • Guy Pujolle
    • 2
  • Mikaël Salaun
    • 3
  • Hubert Zimmermann
    • 4
  1. 1.University of Troyes, UTTTroyesFrance
  2. 2.LIP6UPMCParisFrance
  3. 3.France TelecomLannionFrance
  4. 4.Ginkgo-NetworksParisFrance

Personalised recommendations