Skip to main content

Dinitz’ Algorithm: The Original Version and Even’s Version

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3895)

Abstract

This paper is devoted to the max-flow algorithm of the author: to its original version, which turned out to be unknown to non-Russian readers, and to its modification created by Shimon Even and Alon Itai; the latter became known worldwide as “Dinic’s algorithm”. It also presents the origins of the Soviet school of algorithms, which remain unknown to the Western Computer Science community, and the substantial influence of Shimon Even on the fortune of this algorithm.

Keywords

  • Short Path
  • Layered Network
  • Outgoing Edge
  • Incoming Edge
  • Edge Removal

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11685654_10
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-32881-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adel’son-Vel’sky, G.M., Landis, E.M.: An algorithm for the organization of information. Soviet Mathematics Doklady 3, 1259–1263 (1962)

    Google Scholar 

  2. Ford, L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  3. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradjev, I.A.: On economical finding of transitive closure of a graph. Doklady Akademii Nauk SSSR 194 (3) (1970) (in Russian); English transl.: Soviet Mathematics Doklady 11, 1270– 1272 (1970)

    Google Scholar 

  4. Dinic, E.A.: An algorithm for the solution of the max-flow problem with the polynomial estimation. Doklady Akademii Nauk SSSR 194(4) (1970) (in Russian); English transl.: Soviet Mathematics Doklady 11, 1277–1280 (1970)

    Google Scholar 

  5. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. of ACM 19, 248–264 (1972)

    MATH  CrossRef  Google Scholar 

  6. Dinic, E.A.: An efficient algorithm for the solution of the generalized set representatives problem. In: Voprosy Kibernetiki, Proc. of the Seminar on Combinatorial Mathematics (Moscow, 1971) Scientific Council on the Complex Problem “Kibernetika”, Akad. Nauk SSSR, pp. 49–54 (1973) (in Russian)

    Google Scholar 

  7. Karzanov, A.V.: An exact time bound for a max-flow finding algorithm applied to the representatives’ problem. In: Voprosy Kibernetiki. Proc. of the Seminar on Combinatorial Mathematics (Moscow, 1971). Scientific Council on the Complex Problem Kibernetika, Akad. Nauk SSSR, pp.66–70 (1973) (in Russian)

    Google Scholar 

  8. Hopkroft, J., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. on Computing 2, 225–231 (1973)

    CrossRef  Google Scholar 

  9. Karzanov, A.V.: Determining the maximum flow in the network by the method of preflows. Doklady Akademii Nauk SSSR 215(1) (1974) (in Russian); English transl. Soviet Mathematics Doklady 15 , 434–437 (1974)

    Google Scholar 

  10. Adel’son-Vel’sky, G.M., Dinic, E.A., Karzanov, A.V.: Network flow algorithms. “Nauka”, Moscow, p. 119 (1975) (in Russian; a review in English see in [25])

    Google Scholar 

  11. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J. on Computing 4, 507–518 (1975)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Cherkassky, B.V.: An algorithm for building a max-flow in a network, running in time O(n2 \(\sqrt{p}\)). Mathematical Methods for Solving Economic Problems 7, 117–126 (1977) “Nauka”, Moscow, 117–126 (in Russian)

    Google Scholar 

  13. Cherkassky, B.V.: A fast algorithm for constructing a maximum flow through a network. In Combinatorial Methods in Network Flow Problems. VNIISI, Moscow, 90–96 (1979) (in Russian; English transl.: Amer. Math. Soc. Transl. 158(2), 23–30 (1994)

    Google Scholar 

  14. Even, S.: Graph Algorithms. Computer Science Press, Rockville (1979)

    MATH  Google Scholar 

  15. Galil, Z.: An O(V5/3 E2/3) algorithm for the maximal flow problem. Acta Inf. 14, 221-242 (1980)

    Google Scholar 

  16. Galil, Z., Naaman, A.: An O(EV log2V ) algorithm for the maximal flow problem. J. Comput. Syst. Sci. 21(2), 203–217 (1980)

    MATH  CrossRef  Google Scholar 

  17. Galil, Z.: On the theoretical efficiency of various network flow algorithms. Theor. Comp. Sci. 14, 103–111 (1981)

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. Shiloach, Y., Vishkin, U.: An O(n2 log n) parallel max-flow algorithm. J. of Algorithms 3, 128–146 (1982)

    MATH  CrossRef  MathSciNet  Google Scholar 

  19. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 24, 362–391 (1983)

    CrossRef  MathSciNet  Google Scholar 

  20. Goldberg, A.V.: A new max-flow algorithm. TR MIT/LCS/TM-291, Laboratory for Comp. Sci., MIT, Cambridge (1985)

    Google Scholar 

  21. Tarjan, R.E.: Amortized computational complexity. SIAM J. Alg. Disc. Meth. 6(2), 306–318 (1985)

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. In: Proc. of the 18th ACM Symp. on the Theory of Computing, pp. 136–146 (1986); Full paper in J. of ACM 35, 921–940 (1988)

    Google Scholar 

  23. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill, New York (1990)

    MATH  Google Scholar 

  24. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 15(3), 430–466 (1990)

    MATH  CrossRef  MathSciNet  Google Scholar 

  25. Goldberg, A.V., Gusfield, D.: Book Review: Flow algorithms by G.M. Adel’son- Vel’sky, E.A. Dinits, and A.V. Karzanov. SIAM Reviews 33(2), 306–314 (1991)

    CrossRef  Google Scholar 

  26. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)

    Google Scholar 

  27. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for the maximum flow problem. Algorithmica 19, 390–410 (1997)

    MATH  CrossRef  MathSciNet  Google Scholar 

  28. Goldberg, A.V.: Recent developments in maximum flow algorithms (invited lecture). In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 1–10. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  29. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. Journal of ACM 45, 753–782 (1998)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dinitz, Y. (2006). Dinitz’ Algorithm: The Original Version and Even’s Version. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds) Theoretical Computer Science. Lecture Notes in Computer Science, vol 3895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11685654_10

Download citation

  • DOI: https://doi.org/10.1007/11685654_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32880-3

  • Online ISBN: 978-3-540-32881-0

  • eBook Packages: Computer ScienceComputer Science (R0)