Skip to main content

Concurrent Zero Knowledge Without Complexity Assumptions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3876)

Abstract

We provide unconditional constructions of concurrent statistical zero-knowledge proofs for a variety of non-trivial problems (not known to have probabilistic polynomial-time algorithms). The problems include Graph Isomorphism, Graph Nonisomorphism, Quadratic Residuosity, Quadratic Nonresiduosity, a restricted version of Statistical Difference, and approximate versions of the (coNP forms of the) Shortest Vector Problem and Closest Vector Problem in lattices.

For some of the problems, such as Graph Isomorphism and Quadratic Residuosity, the proof systems have provers that can be implemented in polynomial time (given an NP witness) and have Õ(log n) rounds, which is known to be essentially optimal for black-box simulation.

To the best of our knowledge, these are the first constructions of concurrent zero-knowledge proofs in the plain, asynchronous model (i.e., without setup or timing assumptions) that do not require complexity assumptions (such as the existence of one-way functions).

Keywords

  • Proof System
  • Graph Isomorphism
  • Commitment Scheme
  • Complexity Assumption
  • Zero Knowledge

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

A full version of this paper is available [1].

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-32732-5_32

References

  1. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge without complexity assumptions. Technical Report 05-093, Electronic Colloquium on Computational Complexity (2005), http://eccc.uni-trier.de/eccc-reports/2005/TR05-093/

  2. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM Journal on Computing 25(1), 169–192 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proc. 30th STOC, pp. 409–418 (1998)

    Google Scholar 

  5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(1), 691–729 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Goldreich, O.: Foundations of cryptography, vol. 1. Cambridge University Press, Cambridge, UK (2001)

    CrossRef  MATH  Google Scholar 

  7. Goldreich, O.: Zero-knowledge twenty years after its invention (2002), http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

  8. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167 (1986)

    Google Scholar 

  9. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attack. In: Proc. 22nd STOC, pp. 427–437 (1990)

    Google Scholar 

  10. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosenciphertext security. In: Proc. 40th FOCS, pp. 543–553 (1999)

    Google Scholar 

  12. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  14. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryption schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report 2002/042 (2002), http://eprint.iacr.org/

  15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products. In: Proc. of the 5th ACM Conference on Computer and Communications Security, pp. 67–72 (1998)

    Google Scholar 

  17. Okamoto, T.: On relationships between statistical zero-knowledge proofs. Journal of Computer and System Sciences 60(1), 47–108 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge. In: Proc. 30th STOC, pp. 399–408 (1998)

    Google Scholar 

  19. Vadhan, S.: An unconditional study of computational zero knowledge. In: Proc. 45th STOC, pp. 176–185 (2004)

    Google Scholar 

  20. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zeroknowledge proofs. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference (1991)

    Google Scholar 

  21. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zeroknowledge. In: Second Israel Symposium on Theory of Computing Systems, pp. 3–17 (1993)

    Google Scholar 

  22. Feige, U.: Alternative models for zero knowledge interactive proofs. PhD thesis, Weizmann Institute of Science, Israel (1990)

    Google Scholar 

  23. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  24. Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the Internet. In: Proc. 39th FOCS, pp. 484–492 (1998)

    Google Scholar 

  25. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithm rounds. In: Proc. 33rd STOC, pp. 560–569 (2001)

    Google Scholar 

  26. Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  27. Canetti, R., Kilian, J., Petrank, E., Rosen, R.: Black-box concurrent zeroknowledge requires (almost) logarithmically many rounds. SIAM Journal on Computing 32(1), 1–47 (2003)

    CrossRef  MATH  Google Scholar 

  28. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: Proc. 43rd FOCS, pp. 366–375 (2002)

    Google Scholar 

  29. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd FOCS, pp. 106–115 (2001)

    Google Scholar 

  30. Di Crescenzo, G.: Removing complexity assumptions from concurrent zero-knowledge proofs. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 426–435. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  31. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  32. Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)

    MathSciNet  CrossRef  MATH  Google Scholar 

  33. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal of the ACM 50(2) (2003)

    Google Scholar 

  34. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  35. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds. In: Proc. 22nd STOC, pp. 482–493 (1990)

    Google Scholar 

  36. Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive. Journal of Cryptology 10(1), 37–49 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  37. Rosen, A.: The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD thesis, Weizmann Institute of Science, Israel (2003)

    Google Scholar 

  38. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  39. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: Proc. 44th FOCS, pp. 80–91 (2003)

    Google Scholar 

  40. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991)

    MathSciNet  CrossRef  MATH  Google Scholar 

  41. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  42. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice problems. Journal of Computer and System Sciences 60(3), 540–563 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  43. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM Journal on Computing 20(6), 1084–1118 (1991)

    MathSciNet  CrossRef  MATH  Google Scholar 

  44. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. In: Proc. 45th FOCS, pp. 362–371 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S. (2006). Concurrent Zero Knowledge Without Complexity Assumptions. In: Halevi, S., Rabin, T. (eds) Theory of Cryptography. TCC 2006. Lecture Notes in Computer Science, vol 3876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681878_1

Download citation

  • DOI: https://doi.org/10.1007/11681878_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32731-8

  • Online ISBN: 978-3-540-32732-5

  • eBook Packages: Computer ScienceComputer Science (R0)