Skip to main content

On the Complexity of the “Most General” Firing Squad Synchronization Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3884)

Abstract

We show that if a minimal-time solution exists for a fundamental distributed computation primitive, synchronizing a general directed network of finite-state processors, then there must exist an extraordinarily fast \(O(ED log_2 D (log_2 n)^2)\) algorithm in the RAM model of computation for exactly determining the diameter of a general directed graph. The proof is constructive.

This result interconnects two very distinct areas of computer science: distributed protocols on networks of intercommunicating finite-state machines and standard algorithms on the usual RAM model of computation.

Keywords

  • Short Path
  • Binary Tree
  • Directed Network
  • Binary Search Tree
  • Fast Processor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11672142_57
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32288-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aingworth, Chekuri, Motwani.: Fast estimation of diameter and shortest paths (without matrix multiplication). In: SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete Algorithms) (1996)

    Google Scholar 

  2. Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)

    CrossRef  MATH  Google Scholar 

  3. Berthiaume, A., Bittner, T., Perković, L., Settle, A., Simon, J.: Bounding the firing synchronization problem on a ring. Theoretical Computer Science 320, 213–228 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press/McGraw-Hill (1990)

    Google Scholar 

  6. Culik, K.: Variations of the firing squad problem and applications. Information Processing Letters 30, 153–157 (1989)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Even, S., Litman, A., Winkler, P.: Computing with snakes in directed networks of automata. J. Algorithms 24(1), 158–170 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. of Computing 5, 83–89 (1976)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Goldstein, D., Kobayashi, K.: On the complexity of network synchronization. SIAM J. of Computing (to appear)

    Google Scholar 

  10. Goldstein, D., Kobayashi, K.: On the complexity of network synchronization. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341,5(3), pp. 289–308. Springer, Heidelberg (2004)

    Google Scholar 

  11. Goto, E.: A minimal time solution of the firing squad problem. Course Notes for Applied Mathematics 298, Harvard University, pp. 52–59 (1962)

    Google Scholar 

  12. Grasselli, A.: Synchronization of cellular arrays: The firing squad problem in two dimensions. Information and Control 28, 113–124 (1975)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Jiang, T.: The synchronization of nonuniform networks of finite automata. In: Proc. of the 30th Annual ACM Symp. on Foundations of Computer Science, pp. 376–381 (1989)

    Google Scholar 

  14. Jiang, T.: The synchronization of nonuniform networks of finite automata. Information and Computation 97, 234–261 (1992)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: Time bounds for all-pairs shortest paths. In: IEEE Symposium on Foundations of Computer Science, pp. 560–568 (1991)

    Google Scholar 

  16. Kobayashi, K.: The firing squad synchronization problem for a class of polyautomata networks. J. Comput. System Sci. 17(3), 300–318 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Kobayashi, K.: On the minimal firing time of the firing squad synchronization problem for polyautomata networks. Theoretical Computer Science 7, 149–167 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Kobayashi, K.: On time optimal solutions of the firing squad synchronization problem for two-dimensional paths. Theoretical Computer Science 259, 129–143 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. LaTorre, S., Napoli, M., Parente, M.: Synchronization of one-way connected processors. Complex Systems 10, 239–255 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Mazoyer, J.: An overview of the firing synchronization problem. In: Choffrut, C. (ed.) LITP 1986. LNCS, vol. 316, Springer, Heidelberg (1988)

    CrossRef  Google Scholar 

  21. Mazoyer, J.: Synchronization of two interacting finite automata. International Journal of Algebra and Computation 5(3), 289–308 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  23. Moore, E.F.: Sequential Machines, Selected Papers. Addison Wesley, Reading (1962)

    MATH  Google Scholar 

  24. Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Information and Control 12, 212–220 (1968)

    CrossRef  MATH  Google Scholar 

  25. Nishitani, Y., Honda, N.: The firing squad synchronization problem for graphs. Theoretical Computer Science 14(1), 39–61 (1981)

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. Ostrovsky, R., Wilkerson, D.: Faster computation on directed networks of automata. In: Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, Ottawa, Ontario, Canada, August 2–23, 1995, pp. 38–46 (1995)

    Google Scholar 

  27. Schmid, H., Worsch, T.: The firing squad synchronization problem with many generals for one-dimensional CA. In: 3rd IFIP International Conference on Theoretical Computer Science, pp. 111–124 (2004)

    Google Scholar 

  28. Shinahr, I.: Two- and three-dimensional firing-squad synchronization problem. Information and Control 24, 163–180 (1974)

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78 (1966)

    MathSciNet  CrossRef  MATH  Google Scholar 

  30. Zwick, U.: Exact and approximate distances in graphs

    Google Scholar 

  31. Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 921–932. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldstein, D., Kobayashi, K. (2006). On the Complexity of the “Most General” Firing Squad Synchronization Problem. In: Durand, B., Thomas, W. (eds) STACS 2006. STACS 2006. Lecture Notes in Computer Science, vol 3884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11672142_57

Download citation

  • DOI: https://doi.org/10.1007/11672142_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32301-3

  • Online ISBN: 978-3-540-32288-7

  • eBook Packages: Computer ScienceComputer Science (R0)