Skip to main content

The Basic Theorem on Preconcept Lattices

  • Conference paper
Formal Concept Analysis

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3874))

Abstract

Preconcept Lattices are identified to be (up to isomorphism) the completely distributive complete lattices in which the supremum of all atoms is equal or greater than the infimum of all coatoms. This is a consequence of the Basic Theorem on Preconcept Lattices, which also offers means for checking line diagrams of preconcept lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balachandran, V.K.: A characterization of ΣΔ-rings of subsets. Fundamenta Mathematica 41, 38–41 (1954)

    MATH  MathSciNet  Google Scholar 

  2. Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press, Columbia (1974)

    MATH  Google Scholar 

  3. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999), German version: Springer, Heidelberg (1996)

    MATH  Google Scholar 

  4. Piaget, J.: Einführung in die genetische Erkenntnistheorie. Suhrkamp taschenbuch wissenschaft 6. Suhrkamp, Frankfurt (1973)

    Google Scholar 

  5. Raney, G.N.: Completely distributive lattices. Proc. Amer. Matm. Soc. 3, 677–680 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  6. Stahl, J., Wille, R.: Preconcepts and set representations of contexts. In: Gaul, W., Schader, M. (eds.) Classification as a tool of research, pp. 431–438. North-Holland, Amsterdam (1986)

    Google Scholar 

  7. Wille, R.: Preconcept algebras and generalized double Boolean algebras. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burgmann, C., Wille, R. (2006). The Basic Theorem on Preconcept Lattices. In: Missaoui, R., Schmidt, J. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671404_5

Download citation

  • DOI: https://doi.org/10.1007/11671404_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32203-0

  • Online ISBN: 978-3-540-32204-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics