Abstract
Preconcept Lattices are identified to be (up to isomorphism) the completely distributive complete lattices in which the supremum of all atoms is equal or greater than the infimum of all coatoms. This is a consequence of the Basic Theorem on Preconcept Lattices, which also offers means for checking line diagrams of preconcept lattices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balachandran, V.K.: A characterization of ΣΔ-rings of subsets. Fundamenta Mathematica 41, 38–41 (1954)
Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press, Columbia (1974)
Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999), German version: Springer, Heidelberg (1996)
Piaget, J.: Einführung in die genetische Erkenntnistheorie. Suhrkamp taschenbuch wissenschaft 6. Suhrkamp, Frankfurt (1973)
Raney, G.N.: Completely distributive lattices. Proc. Amer. Matm. Soc. 3, 677–680 (1952)
Stahl, J., Wille, R.: Preconcepts and set representations of contexts. In: Gaul, W., Schader, M. (eds.) Classification as a tool of research, pp. 431–438. North-Holland, Amsterdam (1986)
Wille, R.: Preconcept algebras and generalized double Boolean algebras. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 1–13. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burgmann, C., Wille, R. (2006). The Basic Theorem on Preconcept Lattices. In: Missaoui, R., Schmidt, J. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671404_5
Download citation
DOI: https://doi.org/10.1007/11671404_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32203-0
Online ISBN: 978-3-540-32204-7
eBook Packages: Computer ScienceComputer Science (R0)