Counting Pseudo-intents and #P-completeness

  • Sergei O. Kuznetsov
  • Sergei Obiedkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)


Implications of a formal context (G,M,I) have a minimal implication basis, called Duquenne-Guigues basis or stem base. It is shown that the problem of deciding whether a set of attributes is a premise of the stem base is in coNP and determining the size of the stem base is polynomially Turing equivalent to a #P-complete problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganter, B.: Two Basic Algorithms in Concept Analysis, Preprint Nr. 831, Technische Hochschule Darmstadt (1984)Google Scholar
  2. 2.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  3. 3.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  4. 4.
    Guigues, J.-L., Duquenne, V.: Informative implications derived from a table of binary data. Preprint, Groupe Mathématiques et Psychologie, Université René Descartes, Paris (1984)Google Scholar
  5. 5.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 24(95), 5–18 (1986)MathSciNetGoogle Scholar
  6. 6.
    Kuznetsov, S.O.: On the Intractability of Computing the Duquenne-Guigues Base. Journal of Universal Computer Science 10(8), 927–933 (2004)MathSciNetGoogle Scholar
  7. 7.
    Valiant, L.G.: The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 8(3), 410–421 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sergei O. Kuznetsov
    • 1
  • Sergei Obiedkov
    • 2
  1. 1.VINITI InstituteMoscowRussia
  2. 2.University of PretoriaPretoriaSouth Africa

Personalised recommendations