Advertisement

An Enumeration Problem in Ordered Sets Leads to Possible Benchmarks for Run-Time Prediction Algorithms

  • Tushar S. Kulkarni
  • Bernd S. W. Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)

Abstract

Motivated by the desire to estimate the number of order-preserving self maps of an ordered set, we compare three algorithms (Simple Sampling [4], Partial Backtracking [10] and Heuristic Sampling [1]) which predict how many nodes of a search tree are visited. The comparison is for the original algorithms that apply to backtracking and for modifications that apply to forward checking. We identify generic tree types and concrete, natural problems on which the algorithms predict incorrectly. We show that incorrect predictions not only occur because of large statistical variations but also because of (perceived) systemic biases of the prediction. Moreover, the quality of the prediction depends on the order of the variables. Our observations give new benchmarks for estimation and seem to make heuristic sampling the estimation algorithm of choice.

Keywords

constraint satisfaction search enumeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, P.C.: Heuristic Sampling: A method for predicting the performance of tree searching programs. SIAM J. Comput. 21, 295–315 (1992)zbMATHCrossRefGoogle Scholar
  2. 2.
    Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, pp. 276–284. Wiley, New York (1992)Google Scholar
  3. 3.
    Duffus, D., Rödl, V., Sands, B., Woodrow, R.: Enumeration of order-preserving maps. Order 9, 15–29 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comp. 29, 121–136 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kulkarni, T.: Experimental evaluation of selected algorithms for estimating the cost of solving a constraint satisfaction problem. MS. Thesis, Louisiana Tech University (2001)Google Scholar
  6. 6.
    Kondrak, G., van Beek, P.: A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence 89, 365–387 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Liu, W.-P., Wan, H.: Automorphisms and Isotone Self-Maps of Ordered Sets with Top and Bottom. Order 10, 105–110 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mackworth, A.K.: Constraint Satisfaction. In: Encyclopedia of Artificial Intelligence, pp. 284–293. Wiley, New York (1992)Google Scholar
  9. 9.
    Priestley, H.A., Ward, M.P.: A multipurpose backtracking algorithm. Journal of Symbolic Computation 18, 1–40 (1994)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Purdom, P.W.: Tree size by partial backtracking. SIAM J. Comput. 7, 481–491 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rival, I., Rutkowski, A.: Does almost every isotone self-map have a fixed point? In: Bolyai Math. Soc. Extremal Problems for Finite Sets. Bolyai Soc. Math. Studies 3, Viségrad, Hungary, pp. 413–422 (1991)Google Scholar
  12. 12.
    Schröder, B.: Ordered Sets – An Introduction. Birkhäuser Verlag, Boston (2003)zbMATHGoogle Scholar
  13. 13.
    Schröder, B.: The Automorphism Conjecture for Small Sets and Series Parallel Sets. To appear in ORDER (2005)Google Scholar
  14. 14.
    Sillito, J.: Arc consistency for general constraint satisfaction problems and estimating the cost of solving constraint satisfaction problems. M. Sc. thesis, University of Alberta (2000)Google Scholar
  15. 15.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, New York (1993)Google Scholar
  16. 16.
    Xia, W.: Fixed point property and formal concept analysis. Order 9, 255–264 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tushar S. Kulkarni
    • 1
  • Bernd S. W. Schröder
    • 2
  1. 1.Program of Computer ScienceLouisiana Tech UniversityRustonUSA
  2. 2.Program of Mathematics & StatisticsLouisiana Tech UniversityRustonUSA

Personalised recommendations