Advertisement

Characterizing Planar Lattices Using Left-Relations

  • Christian Zschalig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)

Abstract

With the help of the left-relation on lattices [11] we give two characterizations for planar lattices. They can be used to decide already in a context, whether the associated concept lattice is planar. With the help of these results we hope to find a quick algorithm to recognize planar lattices and draw them in the plane in the near future.

Keywords

Planar Lattice Lattice Versus Planarity Condition Concept Lattice Maximal Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, K.A., Fishburn, P., Roberts, F.S.: Partial Orders of Dimension 2. Networks 2, 11–28 (1971)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory. In: Amer. Math. Soc., 3rd edn. (1967)Google Scholar
  3. 3.
    Cole, R.: Automated Layout of Concept Lattice Using Layer Diagrams and Additive Diagrams. In: Austr. Comp. Sc. Conf. (2000)Google Scholar
  4. 4.
    DiBattista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  5. 5.
    Dushnik, B., Miller, E.W.: Partially Ordered Sets. Amer. J. Math. 63, 600–610 (1941)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  7. 7.
    Kelly, D., Rival, I.: Planar Lattices. Can. J. Math. 27(3), 636–665 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  9. 9.
    Ganter, B.: Conflict Avoidance in Order Diagrams. TU Dresden (2003) (preprint)Google Scholar
  10. 10.
    Schmidt, B.: Ein Optimierungsalgorithmus für additive Liniendiagramme. Diploma Thesis, TU Dresden (2002)Google Scholar
  11. 11.
    Zschalig, C.: Planarity of Lattices - An approach based on attribute additivity. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 391–402. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Zschalig
    • 1
  1. 1.Institut für AlgebraTU DresdenGermany

Personalised recommendations