Advertisement

An FCA Interpretation of Relation Algebra

  • Uta Priss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)

Abstract

This paper discusses an interpretation of relation algebra and fork algebra with respect to FCA contexts. In this case, “relation algebra” refers to the DeMorgan-Peirce-Schroeder-Tarski algebra and not to the “relational algebra” as described by Codd. The goal of this interpretation is to provide an algebraic formalisation of object-relational databases that is based on binary relations and thus closer to FCA and formal contexts than the traditional formalisation based on Codd. The formalisation provides insights into certain symmetries (among quantifiers) and the use of ternary relations and part-whole relations for building relational databases.

Keywords

Binary Relation Relational Database Transitive Closure Relational Schema Relation Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik, S.: The Object-Oriented Database System Manifesto. In: Proceedings of the First International Conference on Deductive and Object-Oriented Databases, Kyoto, Japan, pp. 223–240 (1989)Google Scholar
  3. 3.
    Brink, C., Britz, K., Schmidt, R.: Peirce Algebras. Max-Planck-Institut für Informatik (1992) MPI-I-92-229Google Scholar
  4. 4.
    Codd, E.: A relational model for large shared data banks. Communications of the ACM 13(6) (1970)Google Scholar
  5. 5.
    Faid, M., Missaoui, R., Godin, R.: Mining Complex Structures Using Context Concatenation in Formal Concept Analysis. In: Mineau, G., Fall, A. (eds.) Proceedings of the Second International KRUSE Symposium, pp. 45–59 (1997)Google Scholar
  6. 6.
    Frias, M., Veloso, P., Baum, G.: Fork Algebras: Past, Present and Future. Journal on Relational Methods in Computer Science 1, 181–216 (2004)Google Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  8. 8.
    Hansen, G., Hansen, J.: Human Performance in Relational Algebra, Tuple Calculus, and Domain Calculus. International Journal of Man-Machine Studies 29, 503–516 (1988)CrossRefGoogle Scholar
  9. 9.
    Hereth, J.: Relational Scaling and Databases. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 62–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Imielinski, T., Lipski, W.: The relational model of data and cylindric algebras. Journal of Computer and Systems Sciences 28, 80–102 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jain, M., Mendhekar, A., Van Gucht, D.: A Uniform Data Model for Relational Data and Meta-Data Query Processing. In: International Conference on Management of Data (1995)Google Scholar
  12. 12.
    Kim, K.H.: Boolean Matrix Theory and Applications. Marcel Dekker Inc., New York (1982)zbMATHGoogle Scholar
  13. 13.
    Lyndon, R.: The representation of relational algebras. Ann. of Math. 2(51), 707–729 (1950)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Maddux, R.: Relation-algebraic semantics. Theoretical Computer Science 160, 1–85 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pratt, V.R.: Origins of the Calculus of Binary Relations. In: Proc. IEEE Symp. on Logic in Computer Science, pp. 248–254 (1992)Google Scholar
  16. 16.
    Pratt, V.R.: The Second Calculus of Binary Relations. In: Proc. 18th International Symposium on Mathematical Foundations of Computer Science, Gdansk, Poland, pp. 142–155. Springer, Heidelberg (1993)Google Scholar
  17. 17.
    Priss, U.: Relational Concept Analysis: Semantic Structures in Dictionaries and Lexical Databases (PhD Thesis). Verlag Shaker, Aachen (1998)Google Scholar
  18. 18.
    Priss, U., Old, L.J.: Modelling Lexical Databases with Formal Concept Analysis. Journal of Universal Computer Science 10(8), 967–984 (2004)Google Scholar
  19. 19.
    Priss, U.: Establishing connections between Formal Concept Analysis and Relational Databases. In: Dau, Mugnier, Stumme (eds.) Common Semantics for Sharing Knowledge: Contributions to ICCS 2005, pp. 132–145 (2005)Google Scholar
  20. 20.
    Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tarski, A.: Contributions to the theory of models. Indag. Math 17, 56–64 (1955)MathSciNetGoogle Scholar
  22. 22.
    Van den Bussche, J.: Applications of alfred tarski’s ideas in database theory. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 20–37. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Wagner, S. (2003), Transitive closure in relational database systems, On-line available at http://www.stefan-wagner.info/cs/trans_clos.php
  24. 24.
    Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 382–395. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uta Priss
    • 1
  1. 1.School of ComputingNapier UniversityEdinburghUK

Personalised recommendations