Spatial Indexing for Scalability in FCA

  • Ben Martin
  • Peter Eklund
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)


The paper provides evidence that spatial indexing structures offer faster resolution of Formal Concept Analysis queries than B-Tree/Hash methods. We show that many Formal Concept Analysis operations, computing the contingent and extent sizes as well as listing the matching objects, enjoy improved performance with the use of spatial indexing structures such as the RD-Tree. Speed improvements can vary up to eighty times faster depending on the data and query. The motivation for our study is the application of Formal Concept Analysis to Semantic File Systems. In such applications millions of formal objects must be dealt with. It has been found that spatial indexing also provides an effective indexing technique for more general purpose applications requiring scalability in Formal Concept Analysis systems. The coverage and benchmarking are presented with general applications in mind.


Formal Context Formal Concept Analysis Spatial Indexing Query Object Base Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Libferris, (visited November 2005)
  2. 2.
    Mail-sleuth homepage, (visited January 2005)
  3. 3.
    Postgresql, (visited June 2004)
  4. 4.
    Blake, C., Merz, C.: UCI Repository of Machine Learning Databases, Irvine, CA. University of California, Department of Information and Computer Science (1998),
  5. 5.
    Carpineto, C., Romano, G.: Concept Data Analysis. Wiley, England (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cole, R., Eklund, P.: Analyzing an email collection using formal concept analysis. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 309–315. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Cole, R., Eklund, P.: Browsing semi-structured web texts using formal concept analysis. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 319–332. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Cole, R., Stumme, G.: Cem: A conceptual email manager. In: 7th International Conference on Conceptual Structures, ICCS 2000. Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Folk, M.J., Zoelick, B.: File Structures. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  11. 11.
    Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole Jr., J.W.: Semantic file systems. In: Proceedings of 13th ACM Symposium on Operating Systems Principles, ACM SIGOPS, pp. 16–25 (1991)Google Scholar
  12. 12.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM-SIGMOD International Conference on Management of Data, Boston, Mass (1984)Google Scholar
  13. 13.
    Hellerstein, J.M., Pfeifer, A.: The RD-Tree: An Index Structure for Sets, Technical Report 1252. University of Wisconsin at Madison (October 1994)Google Scholar
  14. 14.
    Helmer, S.: Index structures for databases containing data items with setvalued attributes (1997)Google Scholar
  15. 15.
    Martin, B.: File system wide file classiffication with agents. In: Australian Document Computing Symposium (ADCS 2003). University of Queensland (2003)Google Scholar
  16. 16.
    Martin, B.: Formal concept analysis and semantic file systems. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 88–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Zaki, M.J., Parimi, N., De, N., Gao, F., Phoophakdee, B., Urban, J., Chaoji, V., Hasan, M.A., Salem, S.: Towards generic pattern mining. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kriegelm, H.-P., Schneider, R., Beckmann, N., Seeger, B.: The r*-tree: An efficient and robust access method for points and rectangles. In: Proc. ACM-SIGMOD International Conference on Management of Data, Atlantic city, N.J. (1990)Google Scholar
  19. 19.
    Padioleau, Y., Ridoux, O.: A logic file system. In: USENIX 2003 Annual Technical Conference, pp. 99–112 (2003)Google Scholar
  20. 20.
    Prediger, S.: Logical scaling in formal concept analysis. In: International Conference on Conceptual Structures, pp. 332–341. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Inkeri Verkamo, A.: Fast discovery of association rules. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)Google Scholar
  22. 22.
    Rock, T., Wille, R.: Ein TOSCANA-erkundungssytem zur literatursuche. In: Stumme, G., Wille, R. (eds.) Begriffiche WissensveraRbeitung: Methoden und Anwendungen, pp. 239–253. Springer, Heidelberg (2000)Google Scholar
  23. 23.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. J. on Knowledge and Data Engineering (KDE) 42, 189–222 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Tow, D.: SQL Tuning. O’Reilly & Associates, Sebastopol (2004)Google Scholar
  25. 25.
    Yang, W.S., Chung, Y.D., Kim, M.H.: The rd-tree: a structure for processing partial-max/min queries in olap. Inf. Sci. Appl. 146(1-4), 137–149 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ben Martin
    • 1
  • Peter Eklund
    • 2
  1. 1.Information Technology and Electrical EngineeringThe University of QueenslandSt. LuciaAustralia
  2. 2.School of Economics and Information SystemsThe University of WollongongWollongongAustralia

Personalised recommendations