Interactive Association Rules Discovery

  • Raoul Medina
  • Lhouari Nourine
  • Olivier Raynaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)


An interactive discovery method for finding association rules is presented. It consists in a user-guided search using reduction operators on a rule. Rules are generated on-demand according to the navigation made by the user. Main interest of this approach is that, at each step, the user has only a linear number of new rules to analyze and that all computations are done in polynomial time. Several reduction operators are presented. We also show that the search space can be reduced when clone items are present.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD 1993, Washington, USA (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: 20th International Conference of Very Large DataBasis (VLDB), Santiago, Chile, September 1994, pp. 487–499 (1994)Google Scholar
  3. 3.
    Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: SIGMOD 1997 (1997)Google Scholar
  4. 4.
    Demetrovics, J., Libkin, L., Muchnik, I.B.: Functional dependencies in relational databases: A lattice point of view. Discrete Applied Mathematics 40(2), 155–185 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Duquenne, V., Guigues, J.-L.: Famille minimale d’implications informatives résultant d’un tableau de données binaires. Mathématiques Sciences Humaines 24 (1986)Google Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal concept analysis. In: Mathematical foundation. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Gely, A., Medina, R., Nourine, L., Renaud, Y.: Uncovering and reducing hidden combinatorics in guigues-duquenne covers. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 235–248. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Godin, R., Missaoui, R.: An incremental concept formation approach for learning from databases. Theoritical Computer Science: Special issue on formal methods in databases and softwear engineering 133(2), 387–419 (1994)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data. Dallas, Texas, USA (2000)Google Scholar
  10. 10.
    Hilderman, R.J., Hamilton, H.J.: Knowledge discovery and interestingness measures: a survey. Technical report CS99-04, Departement of computer science, University of Regina (1999)Google Scholar
  11. 11.
    Hipp, J., Guentzer, U.: Is pushing constraints deeply into the mining algorithms really what we want? SIGKDD Explorations 4(1), 50–55 (2002)CrossRefGoogle Scholar
  12. 12.
    Hipp, J., Guentzer, U., Nakhaeizadeh, G.: Algorithms for association rules mining - a general survey and comparison. SIGKDD Exploration 2(1), 58–64 (2000)CrossRefGoogle Scholar
  13. 13.
    Maier, D.: The theory of relational data bases, Computer Science Press Rockville (1983)Google Scholar
  14. 14.
    Manilla, H., Räihä, K.J.: On the complexity of inferring functionnal dependencies. Discret Applied Mathematics 40(2), 237–243 (1992)CrossRefGoogle Scholar
  15. 15.
    Medina, R., Noyer, C., Raynaud, O.: Efficient algorithms for clone items detection. In: CLA 2005, pp. 70–81 (2005)Google Scholar
  16. 16.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)CrossRefGoogle Scholar
  17. 17.
    Pasquier, N., Bastides, Y., Taouil, R., Lakhal, L.: Closed set based discovery of small covers for association rules. In: Proceeding in BDA conf., October 1999, pp. 361–381 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raoul Medina
    • 1
  • Lhouari Nourine
    • 1
  • Olivier Raynaud
    • 1
  1. 1.L.I.M.O.S. Université Blaise PascalClermont-FerrandFrance

Personalised recommendations