A Note on Negation: A PCS-Completion of Semilattices

  • Léonard Kwuida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)


In the paper “Which concept lattices are pseudocomplemented?” ([GK05]) we gave a contextual characterization of pseudocomplemented concept lattices by means of the arrow relations. In this contribution we use this description to embed finite semilattices into pseudocomplemented semilattices. This process can be used to define a negation on concepts.

AMS Subject Classification: 06D15, 68T30.


negation semilattices pseudocomplement FCA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BD74]
    Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press (1974)Google Scholar
  2. [Bo54]
    Boole, G.: An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Macmillan, Basingstoke (1854); Reprinted by Dover Publ., New York (1958)Google Scholar
  3. [Ci04]
    Cīrulis, J.: Knowledge representation systems and skew nearlattices. Contributions to General Algebra 14, 43–52 (2004)Google Scholar
  4. [CG00]
    Chajda, I., Glazek, K.: A basic course on general algebra. Technical University Press, Zielona Góra (2000)zbMATHGoogle Scholar
  5. [CM93]
    Chameni Nembua, C., Monjardet, B.: Finite pseudocomplemented lattices and “permutoedre”. Discrete Math. 111(1-3), 105–112 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Du97]
    Düntsch, I.: A logic for rough sets. Theor. Comput. Sci. 179(1-2), 427–436 (1997)zbMATHCrossRefGoogle Scholar
  7. [DG00]
    Düntsch, I., Gediga, G.: Rough set data analysis. Encyclopedia of Computer Science and Technology 43, 281–301 (2000)Google Scholar
  8. [Fr62]
    Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29, 505–514 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [GK05]
    Ganter, B., Kwuida, L.: Which concept lattices are pseudocomplemented? In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 408–416. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  11. [GW99a]
    Ganter, B., Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 377–388. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. [Gr71]
    Grätzer, G.: Lattice Theory. First concepts and distributive lattices. W.H.Freeman and Company, New York (1971)zbMATHGoogle Scholar
  13. [GS04]
    Grätzer, G., Schmidt, E.T.: Finite lattices and congruences. A survey. Algebra Universalis 52, 241–278 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Ho89]
    Horn, L.R.: A natural history of negation. University of Chicago Press (1989)Google Scholar
  15. [Ka80]
    Katrinak, T.: P-algebras. Contributions to lattice theory, Szeged/Hung (1980); Colloq. Math. Soc. Janos Bolyai 33, 549–573 (1983)Google Scholar
  16. [Kw04]
    Kwuida, L.: Dicomplemented lattices. A contextual generalization of Boolean algebras. Dissertation, TU Dresden. Shaker Verlag (2004)Google Scholar
  17. [KTS04]
    Kwuida, L., Tepavčević, A., Šešelja, B.: Negation in Contextual Logic. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 227–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. [KPR04]
    Kwuida, L., Pech, C., Reppe, H.: Generalizations of Boolean algebras. An attribute exploration. Preprint MATH-AL-02-2004, TU Dresden (2004)Google Scholar
  19. [So98]
    Sofronie-Stokkermans, V.: Representation theorems and automated theorem proving in certain classes of non-classical logics. In: Proceedings of the ECAI 1998 workshop on many-valued logic for AI applications (1998)Google Scholar
  20. [Wi00]
    Wille, R.: Boolean Concept Logic. LNCS (LNAI), vol. 1867, pp. 317–331. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Léonard Kwuida
    • 1
  1. 1.Mathematisches InstitutUniversität BernBern

Personalised recommendations