Contribution to the Discrimination of the Medieval Manuscript Texts: Application in the Palaeography

  • Ikram Moalla
  • Frank LeBourgeois
  • Hubert Emptoz
  • Adel M. Alimi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3872)

Abstract

This work presents our first contribution to the discrimination of the medieval manuscript texts in order to assist the palaeographers to date the ancient manuscripts. Our method is based on the Spatial Grey-Level Dependence (SGLD) which measures the join probability between grey levels values of pixels for each displacement. We use the Haralick features to characterise the 15 medieval text styles. The achieved discrimination results are between 50% and 81%, which is encouraging.

Keywords

Personal Style Cooccurrence Matrice Digitize Document Discrimination Rate Writing Style 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Derolez, A.: The Palaeography of Gothic Manuscript Books, from the Twelfth to the Early Sixteenth Century. In: Cambridge Studies in Palaeography and Codicology. Cambridge University Press, Cambridge (2003), http://www.moesbooks.com/cgi-bin/moe/39006.html
  2. 2.
    Crettez, J.P.: A set of handwriting families: style recognition. In: International conference on Document Analysis and Recognition, Augest, vol. 1, p. 489 (1995)Google Scholar
  3. 3.
    Bouletreau, V.: Vers une classification de l’écrit, Thèse de doctorat INSA de Lyon (1997)Google Scholar
  4. 4.
    Eglin, V.: Contributions à la structuration fonctionnelle des documents imprimés. Exploitation de la dynamique du regard dans le repérage de l’information., Thèse de Doctorat, INSA de Lyon (November 13, 1998)Google Scholar
  5. 5.
    Moalla, I., Alimi, A.M., Ben Hamadou, A.: Extraction of Arabic text from multilingual documents. In: IEEE International Conference on Systems, Man and Cybernetics, Tunisie (October 2002)Google Scholar
  6. 6.
    Tan, T.N.: Rotation Invariant Texture Features and Their Use in Automatic Script Identification. IEEE Trans. Pattern Analysis and Machine Intelligence 20(7), 751–756 (1998)CrossRefGoogle Scholar
  7. 7.
    Wood, S.L., Yao, X., Krishnamurthi, K., Dang, L.: Language Identification for Printed Text Independent of Segmentation. In: Proc. IEEE ICIP 1995, pp. 428–431 (1995)Google Scholar
  8. 8.
    Aiolli, F., Simi, M., Sona, D., Sperduti, A., Starita, A., Zaccagnini, G.: SPI: a System for Palaeographic Inspections. AIIA Notizie 4, 34–38 (1999), http://www.dsi.unifi.it/AIIA/ Google Scholar
  9. 9.
    Ciula, A.: Digital palaeography: using the digital representation of medieval script to support palaeographic analysis. Digital Medievalist 1.1 (April 20, 2005)Google Scholar
  10. 10.
    Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of IEEE 67(5), 786–804 (1979)CrossRefGoogle Scholar
  11. 11.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ikram Moalla
    • 1
    • 2
  • Frank LeBourgeois
    • 2
  • Hubert Emptoz
    • 2
  • Adel M. Alimi
    • 1
  1. 1.REsearch Group on Intelligent Machines (REGIM)University of Sfax, ENIS, DGESfaxTunisia
  2. 2.Laboratoire d’InfoRmatique en Images et Systèmes d’information (LIRIS)INSA de LyonFrance

Personalised recommendations