A Semi-automatic Adaptive OCR for Digital Libraries

  • Sachin Rawat
  • K. S. Sesh Kumar
  • Million Meshesha
  • Indraneel Deb Sikdar
  • A. Balasubramanian
  • C. V. Jawahar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3872)


This paper presents a novel approach for designing a semi-automatic adaptive OCR for large document image collections in digital libraries. We describe an interactive system for continuous improvement of the results of the OCR. In this paper a semi-automatic and adaptive system is implemented. Applicability of our design for the recognition of Indian Languages is demonstrated. Recognition errors are used to train the OCR again so that it adapts and learns for improving its accuracy. Limited human intervention is allowed for evaluating the output of the system and take corrective actions during the recognition process.


  1. 1.
    Nagy, G.: Twenty Years of Document Image Analysis in PAMI. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 38–62 (2000)CrossRefGoogle Scholar
  2. 2.
    Pavlidisi, T., Mori, S.: Optical Character Recognition. Proceedings of the IEEE 80, 1026–1028 (1992)Google Scholar
  3. 3.
    Trier, O.D., Jain, A.K., Taxt, T.: Feature Extraction Methods for Character Recognition: A Survey. Pattern Recognition 29, 641–662 (1996)CrossRefGoogle Scholar
  4. 4.
    Digital Library of India at,
  5. 5.
    Doermann, D.: The Indexing and Retrieval of Document Images: A Survey. Computer Vision and Image Understanding (CVIU) 70, 287–298 (1998)CrossRefGoogle Scholar
  6. 6.
    Pal, U., Chaudhuri, B.B.: Indian Script Character Recognition: A Survey. Pattern Recognition 37, 1887–1899 (2004)CrossRefGoogle Scholar
  7. 7.
    Kahan, S., Pavlidis, T., Baird, H.S.: On the Recognition of Printed Characters of Any Font and Size. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 274–288 (1987)CrossRefGoogle Scholar
  8. 8.
    Baird, H.S.: Anatomy of a Versatile Page Reader. Proceedings of the IEEE, Special Issue on Optical Character Recognition(OCR) 80, 1059–1065 (1992)Google Scholar
  9. 9.
    Bokser, M.: Omnidocument Technoloigies. Proceedings of the IEEE, Special Issue on Optical Character Recognition(OCR) 80, 1066–1078 (1992)Google Scholar
  10. 10.
    Ittner, D.J., Baird, H.S.: Language-Free Layout Analysis. In: Proceedings of the 2nd ICDAR, pp. 336–340 (1993)Google Scholar
  11. 11.
    Hartley, R.T., Crumpton, K.: Quality of OCR for Degraded Text Images. In: Proceedings of the fourth ACM conference on Digital libraries, pp. 228–229 (1999)Google Scholar
  12. 12.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  13. 13.
    Zhu, X., Yin, X.: A New Textual/Non-textual Classifier for Document Skew Correction. In: Proc. 16th Int’l. Conf. Pattern Recognition (ICPR 2002), vol. 1, pp. 480–482 (2002)Google Scholar
  14. 14.
    Kumar, K.S.S., Namboodiri, A., Jawahar, C.V.: Learning to Segment Document Images. In: International Conference on Pattern Recognition and Machine Intelligence (2005) (to appear)Google Scholar
  15. 15.
    Jawahar, C.V., Pavan Kumar, M.N.S.S.K., Ravi kiran, S.S.: A Bilinguagl OCR for Hindi and Telugu Documents and Its Applications. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 408–412 (2003)Google Scholar
  16. 16.
    Meshesha, M., Jawahar, C.V.: Recognition of Printed Amharic Documents. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 784–788 (2005)Google Scholar
  17. 17.
    Kanungo, T., Haralick, R.M., Baird, H.S., Stuezle, W., Madigan, D.: A Statistical, Nonparametric Methodology for Document Degradation Model Validation. IEEE Transaction on Pattern Analysis and Machine Intelligence 22, 1209–1223 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sachin Rawat
    • 1
  • K. S. Sesh Kumar
    • 1
  • Million Meshesha
    • 1
  • Indraneel Deb Sikdar
    • 1
  • A. Balasubramanian
    • 1
  • C. V. Jawahar
    • 1
  1. 1.Centre for Visual Information TechnologyInternational Institute of Information TechnologyHyderabadIndia

Personalised recommendations