Advertisement

Results of Bit Error Measurements with Sensor Nodes and Casuistic Consequences for Design of Energy-Efficient Error Control Schemes

  • Andreas Willig
  • Robert Mitschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3868)

Abstract

For the proper design of energy-efficient error control schemes some insight into channel error patterns is needed. This paper presents bit error and packet loss measurements taken with sensor nodes running the popular RFM TR 1001 wireless transceiver. Some key facts from the measurements are presented and it is evaluated, how energy-efficient selected combined forward error correction (FEC) and automatic repeat request (ARQ) schemes would be over the measured channel. One interesting result is that FEC schemes are less energy-efficient than schemes without FEC, even when the additional energy required to decode a packet is not considered. On the other hand, the energy-efficiency can be improved when retransmissions are postponed for a short time.

Keywords

Sensor Node Wireless Sensor Network Packet Loss Medium Access Control Forward Error Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhagwat, P., Bhattacharya, P., Krishna, A., Tripathi, S.K.: Using channel state dependent packet scheduling to improve TCP throughput over wireless LANs. Wireless Networks 3(1), 91–102 (1997)CrossRefGoogle Scholar
  2. 2.
    Cam, R., Leung, C.: Multiplexed ARQ for time-varying channels – part I: System model and throughput analysis. IEEE Transactions on Communications 46(1), 41–51 (1998)CrossRefGoogle Scholar
  3. 3.
    Eckhardt, D.A., Steenkiste, P.: A trace-based evaluation of adaptive error correction for a wireless local area network. MONET - Mobile Networks and Applications 4, 273–287 (1999)CrossRefGoogle Scholar
  4. 4.
    Elliot, E.O.: Estimates of error rates for codes on burst-noise channels. Bell Systems Technical Journal 42, 1977–1997 (1963)Google Scholar
  5. 5.
    Gallager, R.G.: Information Theory and Reliable Communication. John Wiley & Sons, New York (1968)zbMATHGoogle Scholar
  6. 6.
    Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D., Wicker, S.: Complex behavior at scale: An experimental study of low-power wireless sensor networks. Technical Report UCLA/CSD-TR 02-0013, Computer Science Dept., University of California, Los Angeles (UCLA) (2002)Google Scholar
  7. 7.
    Gilbert, E.N.: Capacity of a burst-noise channel. Bell Systems Technical Journal 39, 1253–1265 (1960)Google Scholar
  8. 8.
    Goel, M., Shanbhag, N.R.: Low-Power Channel Coding via Dynamic Reconfiguration. In: Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP), Phoenix, Arizona (March 1999)Google Scholar
  9. 9.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons, Chichester (2005)CrossRefGoogle Scholar
  10. 10.
    Karvonen, H., Shelby, Z., Pomalaza-Raez, C.: Coding for energy efficient wireless embedded networks. In: Proc. International Workshop on Wireless Ad Hoc Networks (IWWAN), Oulu, Finland (June 2004)Google Scholar
  11. 11.
    Lettieri, P., Schurgers, C., Srivastava, M.B.: Adaptive link layer strategies for energy-efficient wireless networking. Wireless Networks 5(5), 339–355 (1999)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Ma, H., Zarki, M.E., Gupta, S.: Error control schemes for networks: An overview. MONET – Mobile Networks and Applications 2(2), 167–182 (1997)CrossRefGoogle Scholar
  13. 13.
    Nguyen, G.T., Katz, R.H., Noble, B., Satyanarayanan, M.: A trace-based approach for modeling wireless channel behavior. In: Proceedings of the Winter Simulation Conference, Coronado, CA (December 1996)Google Scholar
  14. 14.
    Rappaport, T.S.: Wireless Communications – Principles and Practice. Prentice Hall, Upper Saddle River (2002)Google Scholar
  15. 15.
    Sankarasubramaniam, Y., Akyildiz, I.F., McLaughlin, S.W.: Energy efficiency based packet size optimization in wireless sensor networks. In: Proc. 1st IEEE Intl. Workshop on Sensor Network Protocols and Applications (SNPA), Anchorage, AK (May 2003)Google Scholar
  16. 16.
    Shih, E., Calhoun, B.H., Cho, S.-H., Chandrakasan, A.P.: Energy-efficient link layer for wireless microsensor networks. In: Proc. Workshop on VLSI 2001, WVLSI 2001 (April 2001)Google Scholar
  17. 17.
    Willig, A., Kubisch, M., Hoene, C., Wolisz, A.: Measurements of a wireless link in an industrial environment using an IEEE 802.11-compliant physical layer. IEEE Transactions on Industrial Electronics 49(6), 1265–1282 (2002)CrossRefGoogle Scholar
  18. 18.
    Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing in sensor networks. In: Proc. ACM SenSys 2003, Los Angeles, California (November 2003)Google Scholar
  19. 19.
    Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wireless sensor networks. In: Proc. ACM SenSys 2003, Los Angeles, California (November 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Willig
    • 1
  • Robert Mitschke
    • 2
  1. 1.Telecommunication Networks GroupTechnical University Berlin 
  2. 2.Hasso-Plattner-InstituteUniversity of Potsdam 

Personalised recommendations