Advertisement

Power Management for Bluetooth Sensor Networks

  • Luca Negri
  • Lothar Thiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3868)

Abstract

Low power is a primary concern in the field of wireless sensor networks. Bluetooth has often been labeled as an inappropriate technology in this field due to its high power consumption. However, most Bluetooth studies employ rather over–simplified, fully theoretical, or inadequate power models. We present a power model of Bluetooth including scatternet configurations and low–power sniff mode and validate it experimentally on a real Bluetooth module. Based on this model, we introduce a power optimization framework employing MILP (Mixed–Integer Linear Programming) techniques, and devise optimal power management policies in the presence of end–to-end delay constraints. Our optimizations, if backed by power–aggressive hardware implementations, can make Bluetooth viable for a wider range of sensor networks.

Keywords

Power Consumption Integer Linear Program Power Management Active Link Delay Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raghunathan, V., Pering, T., Want, R., Nguyen, A., Jensen, P.: Experience with a low power wireless mobile computing platform. In: Proc. ISLPED 2004, pp. 363–368. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Jones, C.E., Sivalingam, K.M., Agrawal, P., Chen, J.C.: A survey of energy efficient network protocols for wireless networks. Wireless Networks (7), 343–358Google Scholar
  3. 3.
    Schurgers, C., Aberthorne, O., Srivastava, M.: Modulation scaling for energy aware communication systems. In: Proc. ISLPED 2001, pp. 96–99. ACM Press, New York (2001)CrossRefGoogle Scholar
  4. 4.
    Rulnick, J.M., Bambos, N.: Mobile power management for wireless communication networks. Wirel. Netw. 3(1), 3–14 (1997)CrossRefGoogle Scholar
  5. 5.
    Kazantzidis, M., Gerla, M., Johansson, P., Kapoor, R.: Personal area networks: Bluetooth or ieee 802.11? Intl. Journal of Wireless Information Networks, Special Issue MANETs Standards, Research, Applications (2002)Google Scholar
  6. 6.
    Leopold, M., Dydensborg, M.B., Bonnet, P.: Bluetooth and sensor networks: a reality check. In: SenSys 2003: Proc. 1st international conference on Embedded networked sensor systems, pp. 103–113. ACM Press, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Chakraborty, I., Kashyap, A., Rastogi, A., Saran, H., Shorey, R., Kumar, A.: Policies for increasing throughput and decreasing power consumption in bluetooth mac. In: Proc. 2000 IEEE intl. conf. on Personal Wireless Comm., pp. 90–94 (2000)Google Scholar
  8. 8.
    Zhu, H., Cao, G., Kesidis, G., Das, C.: An adaptive power-conserving service discipline for bluetooth. In: 2002 IEEE intl. conf. on Communication, vol. 1, pp. 303–307 (2002)Google Scholar
  9. 9.
    Ashok, R.L., Duggirala, R., Agrawal, D.P.: Energy efficient bridge management policies for inter-piconet communication in bluetooth scatternets. In: Proc. Vehicular Tech. Conf. (2003)Google Scholar
  10. 10.
    Meier, L., Ferrari, P., Thiele, L.: Energy-efficient bluetooth networks. Technical Report 204, Comp. Eng. and Networks Laboratory (TIK), ETH Zurich (2005)Google Scholar
  11. 11.
    Beutel, J., Kasten, O., Mattern, F., Römer, K., Siegemund, F., Thiele, L.: Prototyping wireless sensor network applications with BTnodes. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920, pp. 323–338. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Beutel, J., Dyer, M., Hinz, M., Meier, L., Ringwald, M.: Next-generation prototyping of sensor networks. In: Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pp. 291–292. ACM Press, New York (2004)CrossRefGoogle Scholar
  13. 13.
    Negri, L., Sami, M., Macii, D., Terranegra, A.: Fsm–based power modeling of wireless protocols: the case of bluetooth. In: Proceedings of the 2004 international symposium on Low power electronics and design, pp. 369–374. ACM Press, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Negri, L., Zanetti, D., Tran, Q.D., Sami, M.: Flexible power modeling for wireless systems: Power modeling and optimization of two bluetooth implementations. In: Proc. WoWMoM 2005 - IEEE Intl. Symp. on World of Wireless, Mobile and Multimedia Networks, pp. 408–416 (2005)Google Scholar
  15. 15.
    Hassoun, M.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Negri
    • 1
  • Lothar Thiele
    • 2
  1. 1.Dept. of Electrical Eng. and Comp. Science (DEI)Politecnico di Milano 
  2. 2.Computer Eng. and Networks Lab (TIK)ETH Zurich 

Personalised recommendations