Advertisement

Hierarchical Localization Algorithm Based on Inverse Delaunay Tessellation

  • Masayuki Saeki
  • Junya Inoue
  • Kok-How Khor
  • Tomohiro Kousaka
  • Hiroaki Honda
  • Kenji Oguni
  • Muneo Hori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3868)

Abstract

This paper presents the hierarchical sensor network system for robust localization. This system consists of parent nodes with a low priced L1 GPS receiver and child nodes equipped with an acoustic ranging device. Relative positions between child nodes are estimated based on acoustic ranging through the inverse Delaunay algorithm. This algorithm localizes all the nodes simultaneously, thus, the accumulation of the error in the localization is suppressed. Relatively localized child sensor nodes are given global coordinates with the help of GPS on parent nodes. Field experiment was conducted with three GPS parent nodes and twenty-one child nodes (MOTE).

Keywords

Sensor Node Child Node Parent Node Integer Ambiguity Cycle Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moore, D., Leonard, J., Rus, D., Teller, S.: Robust Distributed Network Localization with Noisy Range Measurements. In: Proc. Second ACM SenSys (2004)Google Scholar
  2. 2.
    Eren, T., Goldenberg, D., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation, and randomization in network localization. In: Proc. IEEE INFOCOM (2004)Google Scholar
  3. 3.
    Hill, J., Culler, D.: Mica: A Wireless Platform for Deeply Embedded Networks. IEEE Micro. 22(6), 12–24 (2002)CrossRefGoogle Scholar
  4. 4.
    Maroti, M.: The Directed Flood Routing Framework. In: Proc. of ACM/IFIP/USENIX 5th International Middleware Conference (2004)Google Scholar
  5. 5.
    Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Operating Systems Review (SI), 36 (2002)Google Scholar
  6. 6.
    Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: Proc. First ACM SenSys (2003)Google Scholar
  7. 7.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications. Springer, Heidelberg (1997)MATHGoogle Scholar
  8. 8.
    Hofmann, B., Wellenhof, H.L., Collins, J.: GPS, Theory and Practice. Springer, NewYork (2001)Google Scholar
  9. 9.
    Seynat, C., Hooper, G., Roberts, C., Rizos, C.: Low-cost deformation measurement system for volcano monitoring. In: Proceedings of The 2004 International Symposium on GNSS/GPS (2004)Google Scholar
  10. 10.
    Lee, H.K., Wang, J., Rizos, C., Li, B., Park, W.P.: Effective cycle slip detection and identification for high accuracy integrated GPS/INS positioning. In: 6th Int. Symp. on Satellite Navigation Technology Including Mobile Positioning & Location Services, Meibourne, Australia, July 2003, CD-ROM proc., paper 43, pp. 22–55 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Masayuki Saeki
    • 1
  • Junya Inoue
    • 2
  • Kok-How Khor
    • 3
  • Tomohiro Kousaka
    • 1
  • Hiroaki Honda
    • 3
  • Kenji Oguni
    • 3
  • Muneo Hori
    • 3
  1. 1.Tokyo University of ScienceChibaJapan
  2. 2.The University of TokyoTokyoJapan
  3. 3.Earthquake Research InstituteThe University of TokyoTokyoJapan

Personalised recommendations