Part of the Bioanalytical Reviews book series (BIOREV, volume 2)


Time-resolved monitoring of metabolic activities in vitro (microphysiometry) is necessary to study the dynamic regulations of core biochemical pathways in cellular disease models. Following a brief review of recent developments in the field, this contribution presents the most important branches of current sensor-based methods of microphysiometry. The primary parameters assessed by microphysiometry are extracellular pH changes and the concentration of dissolved oxygen to conclude on extracellular acidification (EAR) and oxygen uptake rates (OUR) as quantitative measures for cell metabolism. Direct sensing of selected small molecule metabolites or metabolic heat are alternative assay strategies. The major physical transduction principles encompass electrochemical and optochemical sensing complemented by less popular approaches for highly specific applications. All microphysiometric devices include tissue culture maintenance systems that have to guarantee physiological conditions and that must be functionally aligned with the sensing component. The interplay of cell metabolic activity and sensors in microscaled reaction volumes can be simulated with appropriate numerical models describing the physical processes of reaction and diffusion. While aspects of automation and throughput belong more to the engineering side of microphysiometry, both form the basis for the inevitable statistical data acquisition and analysis. This paper concludes with a description of two selected applications of microphysiometry, one in toxicology and the other one in clinical cancer research.


Cell culture Cellular metabolism Cellular respiration Extracellular acidification Microphysiometry Oncology Oxygen sensing pH sensing Toxicology 



The work presented here was in part funded by the German Bundesministerium für Bildung und Forschung during the BIOGRAPHY project (BMBF No. 02PN2241). The authors want to thank the Deutscher Tierschutzbund – Akademie für Tierschutz (German Animal Welfare Federation – Animal Welfare Academy, Neubiberg, Germany) and the colleagues at Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik of Technische Universität München, Munich, Germany. Special thanks to Dr. Regina Kleinhans for the measurements shown in Fig. 8 and to Dr. Frank Alexander Jr. for proofreading.


  1. 1.
    Alajoki ML, Bayter GT, Bemiss WR, Blau D, Bousse LJ, Chan SDH, Dawes TD, Hahnenberger KM, Hamilton JM, Lam P, McReynolds RJ, Modlin DN, Owicki C, Parce JW, Redington D, Stevenson K, Wada HG, Williams J (1997) High-performance microphysiometry in drug discovery. In: Devlin JP (ed) High throughput screening – the discovery of bioactive substances. Marcel Dekker, New York, pp 427–442Google Scholar
  2. 2.
    Roberts WS, Lonsdale DJ, Griffiths J, Higson SPJ (2007) Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens Bioelectron 23:301–318PubMedGoogle Scholar
  3. 3.
    Ges IA, Baudenbacher F (2010) Enzyme electrodes to monitor glucose consumption of single cardiac myocytes in sub-nanoliter volumes. Biosens Bioelectron 25:1019–1024PubMedGoogle Scholar
  4. 4.
    Lehmann M, Baumann W, Brischwein M, Gahle H, Freund I, Ehret R, Drechsler S, Palzer H, Kleintges M, Sieben U, Wolf B (2001) Simultaneous measurement of cellular resporation and acidification with a single CMOS ISFET. Biosens Bioelectron 16:195–203PubMedGoogle Scholar
  5. 5.
    Yotter RA, Wilson M (2004) Sensor technologies for monitoring metabolic activity in single cells – part II: nonoptical methods and applications. IEEE Sensors J 4:412–429Google Scholar
  6. 6.
    Wolf B, Brischwein M, Grothe H, Stepper C, Ressler J, Weyh T (2006) Lab-on-a-chip systems for cellular assays. In: Urban G (ed) BioMEMS series: microsystems, vol 16. Springer, Dordrecht, pp 269–308Google Scholar
  7. 7.
    Burgess RM, Ho KT, Brack W, Lamoreex M (2013) Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): complementary but different approaches for diagnosing causes of environmental toxicity. Environ Toxicol Chem 32:1935–1945PubMedGoogle Scholar
  8. 8.
    Diers AR, Vayalil PK, Oliva CR, Griguer CE, Darley-Usmar V, Hurst DR, Welch DR, Landar A (2013) Mitochondrial bioenergetics of metastatic breast cancer cells in response to dynamic changes in oxygen tension: effects of HIF-1a. PLoS One 8:e68348PubMedPubMedCentralGoogle Scholar
  9. 9.
    Hafeman DG, Parce JW, McConnell H (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–1185PubMedGoogle Scholar
  10. 10.
    Owicki JC, Parce JW (1990) Bioassays with a microphysiometer. Nature 344:271–272 PubMedGoogle Scholar
  11. 11.
    Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell based biosensors and their application in biomedicine. Chem Rev 114:6423–6461PubMedGoogle Scholar
  12. 12.
    Thomas Jr CA, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66PubMedGoogle Scholar
  13. 13.
    Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric filed. PNAS 81:3761–3764PubMedGoogle Scholar
  14. 14.
    Parce JW, Owicki JC, Kercso KM, Sigal GB, Wada HG, Muir VC, Bousse LJ, Ross KL, Sikic BI, McConnell HM (1989) Detection of cell-affecting agents with a silicon biosensor. Science 246:243–246PubMedGoogle Scholar
  15. 15.
    McConnel HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912Google Scholar
  16. 16.
    Wolf B, Brischwein M, Baumann W, Ehret R, Kraus M (1998) Monitoring of cellular signaling and metabolism with modular sensor-technique: the PhysioControl-Microsystem (PCM®). Biosens Bioelectron 13:501–509PubMedGoogle Scholar
  17. 17.
    Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE (2004) A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidificaion rate. Anal Chem 76:519–527PubMedGoogle Scholar
  18. 18.
    Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G, Wego M, Ehret R, Urban G (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–146PubMedGoogle Scholar
  19. 19.
    Demmel F, Brischwein M, Wolf P, Huber F, Pfister C, Wolf B (2015) Nutrient depletion and metabolic profiles in breast carcinoma cell lines measured with a label-free platform. Physiol Meas 36:1367–1381PubMedGoogle Scholar
  20. 20.
    Owicki JC, Parce W (1992) Biosensors based on the energy metabolism of living cells. The physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272PubMedGoogle Scholar
  21. 21.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17(1):70–71PubMedGoogle Scholar
  22. 22.
    Bergveld P (2003) Thirty years of isfetology – what happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B Chem 88(1):1–20Google Scholar
  23. 23.
    Owicki JC, Bousse LJ, Hafeman DG, Kirk GL, Olson JD, Wada HG, Parce JW (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct 23:87–113PubMedGoogle Scholar
  24. 24.
    Glab S, Hulanicki A, Edwall G, Ingman F (1989) Metal–metal oxide and metal oxide electrodes as pH sensors. Anal Chem 21(1):29–47Google Scholar
  25. 25.
    Qin Y, Kwon HJ, Howlader MMR, Deen MJ (2015) Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges. RSC Adv 5:69086–69109Google Scholar
  26. 26.
    Nakao M, Inoue S, Yoshinobu T, Iwasaki H (1996) High-resolution pH imaging sensor for microscopic observation of microorganisms. Sens Actuators B Chem 34:234–239Google Scholar
  27. 27.
    Ito Y (1998) High-spatial resolution LAPS. Sens Actuators B Chem 52:107–111Google Scholar
  28. 28.
    Martinoia S, Rosso N, Grattarola M, Lorenzelli L, Margesin B, Zen M (2001) Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations. Biosens Bioelectron 16:1043–1050PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nemeth B, Piechocinski MS, Cumming DRS (2012) High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging. Sens Actuators B 171–172:747–752Google Scholar
  30. 30.
    Caroll S, Baldwin RP (2010) Self-calibrating microfabricated iridium-oxide pH electrode array for remote monitoring. Anal Chem 82:878–885Google Scholar
  31. 31.
    Wu C-C, Lin W-C, Fu S-Y (2011) The open container-used microfluidic chip using IrOx ultramicroelectrodes for the in situ measurement of extracellular acidification. Biosens Bioelectron 26:4191–4197PubMedGoogle Scholar
  32. 32.
    Simonis A, Lüth H, Wang J, Schöning MJ (2004) New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems. Sens Actuators B 103:429–435Google Scholar
  33. 33.
    Yang H, Kang SK, Choi CA, Kim H, Shin D-H, Kim YS, Kim YT (2004) An iridium oxide reference electrode for use in microfabricated biosensors and biochips. Lab Chip 4:42–46PubMedGoogle Scholar
  34. 34.
    Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73:4354–4363PubMedGoogle Scholar
  35. 35.
    Herst PM, Berridge MV (2007) Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim Biophys Acta 1767:170–177PubMedGoogle Scholar
  36. 36.
    Wagner BA, Venkataraman S, Buettner GR (2011) The rate of oxygen utilization by cells. Free Radic Biol Med 51:700–712PubMedPubMedCentralGoogle Scholar
  37. 37.
    Clark JR, Leland C (1959) Electrochemical device for chemical analysis. Patent US2913386AGoogle Scholar
  38. 38.
    McDonagh C, Kolle C, McEvoy AK (2001) Phase fluorometric dissolved oxygen sensor. Sens Actuators B 74:124–130Google Scholar
  39. 39.
    Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions. Trans Faraday Soc 52:1512–1521Google Scholar
  40. 40.
    Burke CS, Markey A, Nooney RI, Byrne P, McDonagh C (2006) Development of an optical sensor probe for the detection of dissolved carbon dioxide. Sens Actuators B 119:288–294Google Scholar
  41. 41.
    Zilberman Y, Ameri SK, Sonkusale SR (2014) Microfluidic optoelectronic sensor based on a composite halochromic material for dissolved carbon dioxide detection. Sens Actuators B 194:404–409Google Scholar
  42. 42.
    Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301Google Scholar
  43. 43.
    Mross S, Zimmermann T, Winkin N, Kraft M, Vogt H (2015) Integrated multi-sensor system for parallel in-situ monitoring of cell nutrients, metabolites and cell mass in biotechnological processes. Proc Eng 120:372–375Google Scholar
  44. 44.
    Eklund SE, Thompson RG, Snider RM, Carney CK, Wright DW, Wikswo JP, Cliffel DE (2009) Metabolic discrimination of select list agents by monitoring cellular responses in a multianalyte microphysiometer. Sensors 9:2117–2133PubMedGoogle Scholar
  45. 45.
    Moser I, Jobst G, Urban GA (2002) Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine. Biosens Bioelectron 17:297–302PubMedGoogle Scholar
  46. 46.
    Donner JS, Thompson SA, Kreuzer MP, Baffou G, Quidant R (2012) Mapping intracellular temperature using green fluorescent temperature. Nano Lett 12:2107–2111PubMedGoogle Scholar
  47. 47.
    Baffou G (2014) A critique of methods for temperature imaging in single cells. Nat Methods 11:899–901PubMedGoogle Scholar
  48. 48.
    Lee W, Fon W, Axelrod BW, Roukes ML (2009) High sensitivity microfluidic calorimeters for biological and chemical applications. PNAS 106:15225–15230PubMedGoogle Scholar
  49. 49.
    Chancellor EP, Wikswo JP, Baudenbacher F, Radparvar M, Osterman D (2004) Heat conduction calorimeter for massively parallel high throughput measurements with picoliter sample volumes. Appl Phys Lett 85:2408–2410Google Scholar
  50. 50.
    Lerchner J, Wolf A, Buchholz F, Mertens F, Neu TR, Harms H, Maskow T (2008) Miniaturized calorimetry – a new method for real-time biofilm activity analysis. J Microbiol Methods 74:74–81PubMedGoogle Scholar
  51. 51.
    Inomata N, Toda M, Sato M, Ishijima A, Ono T (2012) Pico calorimeter for detection of heat produced in an individual brown fat cell. Appl Phys Lett 100:154104Google Scholar
  52. 52.
    Pettersen EO, Ebbesen P, Gieling RG, Williams KJ, Dubois L, Lambin P, Ward C, Meehan J, Kunkler IH, Langdon SP, Ree AH, Flatmark K, Lyng H, Calzada MJ, Peso LD, Landazuri MO, Görlach A, Flamm H, Kieninger J, Urban G, Weltin A, Singleton DC, Haider S, Buffa FM, Harris AL, Scozzafava A, Supuran CT, Moser I, Jobst G, Busk M, Toustrup K, Overgaard J, Alsner J, Pouyssegur J, Chiche J, Mazure N, Marchiq I, Parks S, Ahmed A, Ashcroft M, Pastorekova S, Cao Y, Rouschop KM, Wouters BG, Koritzinsky M, Mujcic H, Cojocari D (2015) Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem 30:689–721PubMedGoogle Scholar
  53. 53.
    Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747PubMedPubMedCentralGoogle Scholar
  54. 54.
    Wolf P, Brischwein M, Kleinhans R, Demmel F, Schwarzenberger T, Pfister C, Wolf B (2013) Automated platform for sensor-based monitoring and controlled assays of living cells and tissues. Biosens Bioelectron 50:111–117PubMedGoogle Scholar
  55. 55.
    Thedinga E, Ullrich A, Drechsler S, Niendorf R, Kob A, Runge D, Keuer A, Freund I, Lehmann M, Ehret R (2007) In vitro system for the prediction of hepatoxic effects in primary hepatocytes. ALTEX 24:22–34PubMedGoogle Scholar
  56. 56.
    Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13:269–274Google Scholar
  57. 57.
    Pfister C, Bozsak C, Wolf P, Demmel F, Brischwein M (2015) Cell shape-dependent shear stress on adherent cells in a micro-physiologic system as revealed by FEM. Physiol Meas 36:955–966PubMedGoogle Scholar
  58. 58.
    Hoch E, Hirth T, Tovar GEM, Borchers K (2013) Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mater Chem B 1:5675–5685Google Scholar
  59. 59.
    Wiest J, Stadthagen T, Schmidhuber M, Brischwein M, Ressler J, Raeder U, Grothe H, Melzer A, Wolf B (2006) Intelligent mobile lab for metabolics in environmental monitoring. Anal Lett 39(8):1759–1771Google Scholar
  60. 60.
    Hakanson M, Cukierman E, Charnley M (2014) Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 69–70:52–66PubMedGoogle Scholar
  61. 61.
    Baker M (2009) Stem cells: fast and furious. Nature 458:962–965PubMedGoogle Scholar
  62. 62.
    Abbott A (2003) Cell culture: biology’s new dimension. Nature 424:870–872PubMedGoogle Scholar
  63. 63.
    Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224PubMedGoogle Scholar
  64. 64.
    Meads M, Gatenby R, Dalton W (2009) Environment-mediated drug resistance: a major contribution to minimal residual disease. Nat Rev Cancer 9:665–674PubMedGoogle Scholar
  65. 65.
    van der Valk J, Bieback K, Buta C, Cochrane B, Dirks WG, Fu J, Hickman JJ, Hohensee C, Kolar R, Liebsch M, Pistolla F, Schulz M, Thieme D, Weber T, Wiest J, Winkler S, Gstraunthaler G (2017) Fetal bovine serum (FBS): past – present – future. ALTEX.
  66. 66.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Yuan Hsin H, Ingber DE (2010) Reconstituting organ-level function on a chip. Science 328:1662–1668PubMedGoogle Scholar
  67. 67.
    Ravi M, Paramesh V, Kaviya SR, Anuradha E, Paul Solomon FD (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26PubMedGoogle Scholar
  68. 68.
    Kleinhans R, Brischwein M, Wang P, Becker B, Demmel F, Schwarzenberger T, Zottmann M, Wolf P, Niendorf A, Wolf B (2012) Sensor-based cell and tissue screening for personalized cancer chemotherapy. Med Biol Eng Comput 50:117–126PubMedGoogle Scholar
  69. 69.
    Bugge A, Dib L, Collin S (2014) Measuring respiratory activity of adipocytes and adipose tissues in real time. Methods Enzymol 538:233–247PubMedGoogle Scholar
  70. 70.
    Alexander FA, Eggert S, Wiest J (2017) A novel lab-on-a-chip platform for spheroid metabolism monitoring. Cytotechnology. (Epub ahead of print) PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15PubMedGoogle Scholar
  72. 72.
    Wenzel C, Riefke B, Gründemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Räse S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann S (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323:131–143PubMedGoogle Scholar
  73. 73.
    Kondo J, Endo H, Okuyama H, Ishikawa O, Iishi H, Tsujii M, Ohue M, Inoue M (2011) Retaining cell–cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. PNAS 108:6234–6240Google Scholar
  74. 74.
    Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, Bosari S, Loda M (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS 107(18):8352–8356PubMedGoogle Scholar
  75. 75.
    Metzger R, Deglmann CJ, Hoerrlein S, Zapf S, Hilfrich J (2001) Towards in-vitro prediction of an in-vivo cytostatic response of human tumor cells with a fast chemosensitivity assay. Toxicology 166:97–108PubMedGoogle Scholar
  76. 76.
    Voiculescu I, Li F, Liu F, Zhang X, Cancel LM, Tarbell JM, Khademhosseini A (2013) Study of long-term viability of endothelial cells for lab-on-a-chip devices. Sens Actuators B 182:696–705Google Scholar
  77. 77.
    Pancrazio JJ, Gray SA, Shubin YS, Kulagina N, Cuttino DS, Shaffer KM, Eisemann K, Curran A, Zim B, Gross GW, O’Shaughnessy TJ (2003) A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens Bioelectron 18:1339–1347PubMedGoogle Scholar
  78. 78.
    Wiest J, Namias A, Pfister C, Wolf P, Demmel F, Brischwein M (2016) Data processing in cellular microphysiometry. IEEE Trans Biomed Eng 63(11):2368–2375. CrossRefPubMedGoogle Scholar
  79. 79.
    Grundl D, Zhang X, Messaoud S, Pfister C, Demmel F, Mommer MS, Wolf B, Brischwein M (2013) Reaction-diffusion modelling for microphysiometry on cellular specimens. Med Biol Eng Comput 51:387–395PubMedGoogle Scholar
  80. 80.
    Pfister C, Forstmeier C, Biedermann J, Schermuly J, Demmel F, Wolf P, Kaspers B, Brischwein M (2016) Estimation of dynamic metabolic activity in micro-tissue cultures from sensor recordings with an FEM model. Med Biol Eng Comput 54:763–772PubMedGoogle Scholar
  81. 81.
    Wilson DF, Erecifiska M, Drown C, Silvers IA (1979) The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys 195:485–493PubMedGoogle Scholar
  82. 82.
    Koh MY, Powis G (2012) Passing the baton: the HIF-switch. Trends Biochem Sci 37:364–372PubMedPubMedCentralGoogle Scholar
  83. 83.
    Vaupel P, Mayer A (2012) Availability, not respiratory capacity governs oxygen consumption of solid tumors. Int J Biochem Cell Biol 44:1477–1481PubMedGoogle Scholar
  84. 84.
    Otto AM, Hintermair J, Janzon C (2015) NADH-linked metabolic plasticity of MCF-7 breast cancer cells surviving in a nutrient-deprived microenvironment. J Cell Biochem 116:822–835PubMedGoogle Scholar
  85. 85.
    Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, Ferrick DA, Nicholls DG, Brand MD (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81:6868–6878PubMedPubMedCentralGoogle Scholar
  86. 86.
    Brantom PG, Bruner LH, Chamberlain M, De Silva O, Dupuis J, Earl LK, Lovell DP, Pape WJ, Uttley M, Bagley DM, Baker FW, Bracher M, Courtellemont P, Declercq L, Freeman S, Steiling W, Walker AP, Carr GJ, Dami N, Thomas G, Harbell J, Jones PA, Pfannenbecker U, Southee JA, Tcheng M, Argembeaux H, Castelli D, Clothier R, Esdaile DJ, Itigaki H, Jung K, Kasai Y, Kojima H, Kristen U, Larnicol M, Lewis RW, Marenus K, Moreno O, Peterson A, Rasmussen ES, Robles C, Stern M (1997) A summary report of the COLIPA international validation study on alternatives to the draize rabbit eye irritation test. Toxicol In Vitro 11:141–179PubMedGoogle Scholar
  87. 87.
    Balls M, Botham PA, Bruner LH, Spielmann H (1995) The EC/HO international validation study on alternatives to the draize eye irritation test. Toxicol In Vitro 9:871–929PubMedGoogle Scholar
  88. 88.
    Gettings SD, Lordo RA, Hintze KL, Bagley DM, Casterton PL, Chudkowski M, Curren RD, Demetrulias JL, Dipasquale LC, Earl LK, Feder PI, Galli CL, Glaza SM, Gordon VC, Janus J, Kurtz PJ, Marenus KD, Moral J, Pape WJ, Renskers KJ, Rheins LA, Roddy MT, Rozen MG, Tedeschi JP, Zyracki J (1996) The CFTA evaluation of alternatives program: an evaluation of in vitro alternatives to the draize primary eye irritation test. (Phase III) Surfactant-based formulations. Food Chem Toxicol 34:79–117PubMedGoogle Scholar
  89. 89.
    Hartung T, Bruner L, Curren R, Eskes C, Goldberg A, McNamee P, Scott L, Zuang V (2010) First alternative method validated by a retrospective weight-of-evidence approach to replace the draize eye test for the identification of non-irritant substances for a defined applicability domain. ALTEX 27:43–51PubMedGoogle Scholar
  90. 90.
    Kamalian L, Chadwick AE, Bayliss M, French NS, Monshouwer M, Snoeys J, Park BK (2015) The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol In Vitro 29:732–740PubMedGoogle Scholar
  91. 91.
    Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15:2688–2699PubMedGoogle Scholar
  92. 92.
    Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A, Hofmeister LH, Matloff WJ (2013) Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13:3496–3511PubMedPubMedCentralGoogle Scholar
  93. 93.
    Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Duehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33(3):272–321. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Halfter K, Ditsch N, Kolberg HC, Fischer H, Hauzenberger T, Edler von Koch F, Bauerfeind I, von Minckwitz G, Funke I, Crispin A (2015) Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy – the SpheroNEO study. BMC Cancer 15:519PubMedPubMedCentralGoogle Scholar
  95. 95.
    Majewski IJ, Bernards R (2011) Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nat Med 17:304–312PubMedGoogle Scholar
  96. 96.
    O’Brien CP, Taylor SE, O’Leary JJ, Finn SP (2014) Molecular testing in oncology: problems, pitfalls and progress. Lung Cancer 83:309–315PubMedGoogle Scholar
  97. 97.
    Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836PubMedGoogle Scholar
  98. 98.
    Alunni-Fabbroni M, Sandri MT (2010) Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50:289–297PubMedGoogle Scholar
  99. 99.
    Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398:2505–2533PubMedGoogle Scholar
  100. 100.
    Henning T, Brischwein M, Baumann W, Ehret R, Freund I, Kammerer R, Lehmann M, Schwinde A, Wolf B (2001) Approach to a multiparametric sensor-chip-based tumor chemosensitivity assay. Anti-Cancer Drugs 12:21–32PubMedGoogle Scholar
  101. 101.
    Mestres P, Morguet A, Schmidt W, Kob A, Thedinga E (2006) A new method to assess drug sensitivity on breast tumor acute slices preparation. Ann N Y Acad Sci 1091:460–469PubMedGoogle Scholar
  102. 102.
    Cairns RA, Harris IS, Mak T (2011) Regulation of cancer cell metabolism. Nat Rev 11:85–95Google Scholar
  103. 103.
    Weigelt B (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18:311–321PubMedPubMedCentralGoogle Scholar
  104. 104.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Technische Universität München (TUM) – Heinz Nixdorf Lehrstuhl für Biomedizinische ElektronikMunichGermany
  2. 2.cellasys GmbHKronburgGermany

Personalised recommendations