Skip to main content

Interaction of Nanoparticles with Lipid Monolayers and Lung Surfactant Films

  • Chapter
  • First Online:
Book cover Measuring Biological Impacts of Nanomaterials

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 5))

Abstract

It has been shown that the interactions of nanoparticles with lipid and lipid–peptide monolayers mimicking the lung surfactant strongly depend on the physical properties of the nanoparticles, their size, and on the physical properties of the surface film. Hydrophobic nanoparticles have been found inserting into fluid phases of lipid monolayers. They have an adverse effect on the functional properties of the pulmonary surfactant, which strongly depends on the nanoparticle size. But how NPs disturb or inhibit this surfactant function still remains unclear. Experimental evidences gathered under physiologically relevant conditions or from in vivo studies are still lacking. The present review summarizes systematic investigations on simplified model systems of the lung surfactant using high-resolution bioanalytical techniques that have provided valuable hints and indications about the interactions of NPs with the surfactant layer at the molecular level. Further studies are needed in particular for a more detailed understanding of the mechanism by which NPs are capable of crossing the surfactant barrier even though they experience a very different and individual free energy barrier at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

BODIPY-PC:

2-(4, 4-difluoro-5-methyl-4-bora-3a, 4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine

CL:

Cholesterol

CTAB:

Cetyltrimethylammonium bromide

DMAB:

Didodecyldimethylammonium bromide

DPPC:

Dipalmitoyl phosphatidylcholine

DPPE:

Dipalmitoyl phosphatidylethanolamine

DPPG:

Dipalmitoyl phosphatidylglycerols

DPPS:

Dipalmitoyl phosphatidyl serine

DTAB:

Dodecyltrimethylammonium bromide

EMM:

Endothelial model cell membranes

Hepes:

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

LC:

Liquid-condensed phase

LE:

Liquid-expanded phase

LS:

Lung surfactant

NPs:

Nanoparticles

PBS:

Phosphate-buffered saline

PI:

Phosphatidylinositol

POPG:

Palmitoyl oleoyl phosphatidylglycerol

PVA:

Polyvinyl alcohol

SM:

Sphingomyelin

SP-B:

Surfactant-specific protein B

SP-C:

Surfactant-specific protein C

References

  1. Sanguansri P, Augustin MA (2006) Nanoscale materials development – a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  2. Weir A et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  Google Scholar 

  3. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289(1–3):105–109

    Article  CAS  Google Scholar 

  4. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles - known and unknown health risks. J Nanobiotechnology 2(1):12

    Article  Google Scholar 

  5. Villalobos-Hernández JR, Müller-Goymann CC (2006) Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nano-particles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. Int J Pharm 322(1–2):161–170

    Article  Google Scholar 

  6. Villalobos-Hernández JR, Müller-Goymann CC (2007) In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax–decyl oleate nanoparticles. Eur J Pharm Biopharm 65(1):122–125

    Article  Google Scholar 

  7. Nesseem D (2001) Formulation of sunscreens with enhancement sun protection factor response based on solid lipid nanoparticles. Int J Cosmet Sci 33(1):70–79

    Article  Google Scholar 

  8. Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21(10):1137–1143

    Article  CAS  Google Scholar 

  9. Nel A et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  10. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    Article  CAS  Google Scholar 

  11. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  Google Scholar 

  12. Mansour HM, Rhee YS, Wu XA (2009) Nanomedicine in pulmonary delivery. Int J Nanomedicine 4:299–319

    Article  CAS  Google Scholar 

  13. von Nahmen A et al (1997) The phase behavior of lipid monolayers containing pulmonary surfactant protein C studied by fluorescence light microscopy. Eur Biophys J 26(5):359–369

    Article  Google Scholar 

  14. Krol S et al (2000) Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Biophys J 79(2):904–918

    Article  CAS  Google Scholar 

  15. Wang L et al (2005) Monolayer–multilayer transitions in a lung surfactant model: IR reflection–absorption spectroscopy and atomic force microscopy. Eur Biophys J 34(3):243–254

    Article  CAS  Google Scholar 

  16. Sachan AK et al (2012) High-resolution investigation of nanoparticle inter-action with a model pulmonary surfactant monolayer. ACS Nano 6(2):1677–1687

    Article  CAS  Google Scholar 

  17. Leufgen KM et al (1996) Imaging time-of-flight secondary Ion mass spectrometry allows visualization and analysis of coexisting phases in langmuir − blodgett films. Langmuir 12(7):1708–1711

    Article  CAS  Google Scholar 

  18. Harishchandra RK, Saleem M, Galla HJ (2010) Nanoparticle interaction with model lung surfactant monolayers. J R Soc Interface 7:S15–S26

    Article  CAS  Google Scholar 

  19. Benvegnu DJ, McConnelll HM (1992) Line tension between liquid domains in lipid monolayers. J Phys Chem 96(16):6820–6824

    Article  CAS  Google Scholar 

  20. McConnell HM (1991) Structures and transitions in lipid monolayers at the air-water-interface. Annu Rev Phys Chem 42:171–195

    Article  CAS  Google Scholar 

  21. Benvegnu DJ, McConnell HM (1993) Surface dipole densities in lipid monolayers. J Phys Chem 97(25):6686–6691

    Article  CAS  Google Scholar 

  22. Dwivedi MV et al (2014) Size influences the effect of hydrophobic nano-particles on lung surfactant model systems. Biophys J 106(1):289–298

    Article  CAS  Google Scholar 

  23. Peetla C, Labhasetwar V (2008) Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Mol Pharm 5(3):418–429

    Article  CAS  Google Scholar 

  24. Peetla C, Labhasetwar V (2009) Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nanoparticles with a model membrane and cellular uptake. Langmuir 25(4):2369–2377

    Article  CAS  Google Scholar 

  25. Stuart D et al (2006) Biophysical investigation of nanoparticle interactions with lung surfactant model systems. J Biomed Nanotechnol 2(3–4):245–252

    Article  CAS  Google Scholar 

  26. Ku T et al (2008) Size dependent interactions of nanoparticles with lung surfactant model systems and the significant impact on surface potential. J Nanosci Nanotechnol 8(6):2971–2978

    Article  CAS  Google Scholar 

  27. Degen P et al (2008) In situ observation of gamma-Fe2O3 nanoparticle adsorption under different monolayers at the air/water interface. Langmuir 24(22):12958–12962

    Article  CAS  Google Scholar 

  28. Goerke J (1974) Lung surfactant. Biochim Biophys Acta 344(3–4):241–261

    Article  CAS  Google Scholar 

  29. Veldhuizen R et al (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408(2–3):90–108

    Article  CAS  Google Scholar 

  30. Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408(2–3):79–89

    Article  CAS  Google Scholar 

  31. Schurch S, Green FHY, Bachofen H (1998) Formation and structure of surface films: captive bubble surfactometry. Biochim Biophys Acta 1408(2–3):180–202

    Article  CAS  Google Scholar 

  32. Bachofen H et al (2005) Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro. 1720(1–2):59–72

    Google Scholar 

  33. Amrein M, vonNahmen A, Sieber M (1997) A scanning force and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant. Eur Biophys J 26(5):349–357

    Article  CAS  Google Scholar 

  34. Diemel RV et al (2002) Multilayer formation upon compression of surfactant monolayers depends on protein concentration as well as lipid composition - an atomic force microscopy study. J Biol Chem 277(24):21179–21188

    Article  CAS  Google Scholar 

  35. Knebel D et al (2002) Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant. Biophys J 82(1):474–480

    Article  CAS  Google Scholar 

  36. Follows D et al (2007) Multilayers at the surface of solutions of exogenous lung surfactant: direct observation by neutron reflection. Biochim Biophys Acta 1768(2):228–235

    Article  CAS  Google Scholar 

  37. Bourdos N et al (2000) Analysis of lung surfactant model systems with time-of-flight secondary ion mass spectrometry. Biophys J 79(1):357–369

    Article  CAS  Google Scholar 

  38. Scarpelli EM, Mautone AJ (1994) Surface biophysics of the surface monolayer theory is incompatible with regional lung function. Biophys J 67(3):1080–1089

    Article  CAS  Google Scholar 

  39. Serrano AG, Perez-Gil J (2006) Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 141(1–2):105–118

    Article  CAS  Google Scholar 

  40. Zuo YY et al (2008) Current perspectives in pulmonary surfactant - inhibition, enhancement and evaluation. Biochim Biophys Acta 1778(10):1947–1977

    Article  CAS  Google Scholar 

  41. Crouch E, Wright JR (2001) Surfactant proteins A and D and pulmonary host defense. Annu Rev Physiol 63:521–554

    Article  CAS  Google Scholar 

  42. Ledford JG, Pastva AM, Wright JR (2010) Collectins link innate and adaptive immunity in allergic airway disease. Innate Immun 16(3):183–190

    Article  CAS  Google Scholar 

  43. Maina JN et al (2010) Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiol Biochem Zool 83(5):792–807

    Article  CAS  Google Scholar 

  44. Blanco O, Perez-Gil J (2007) Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat respiratory distress syndrome: role of the different components in an efficient pulmonary surfactant. Eur J Pharmacol 568(1–3):1–15

    Article  CAS  Google Scholar 

  45. Nkadi PO, Merritt TA, Pillers DAM (2009) An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab 97(2):95–101

    Article  CAS  Google Scholar 

  46. Merrill JD, Ballard RA (2003) Pulmonary surfactant for neonatal respiratory disorders. Curr Opin Pediatr 15(2):149–154

    Article  Google Scholar 

  47. Clements JA, Avery ME (1998) Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med 157(4):S59–S66

    Article  CAS  Google Scholar 

  48. Wegner DJ et al (2007) A major deletion in the surfactant protein-B gene causing lethal respiratory distress. Acta Paediatr 96(4):516–520

    Article  Google Scholar 

  49. Lawson WE et al (2005) Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin. Am J Pathol 167(5):1267–1277

    Article  CAS  Google Scholar 

  50. Nogee LM et al (1994) A mutation in the surfactant protein-B gene responsible for fatal neonatal respiratory-disease in multiple kindreds. J Clin Invest 93(4):1860–1863

    Article  CAS  Google Scholar 

  51. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultra-structure and morphometric estimation of diffusion capacity. Respir Physiol 32(2):121–140

    Article  CAS  Google Scholar 

  52. de Jong D et al (2008) No effect of one-year treatment with indomethacin on Alzheimer’s disease progression: a randomized controlled trial. PLoS One 3(1)

    Google Scholar 

  53. Igor G (2003) Targeting by deposition. In: Hickey AJ (ed) Pharmaceutical inhalation aerosol technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  54. de Boer AH et al (2002) Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm 249(1–2):219–231

    Article  Google Scholar 

  55. Cheng YS et al (2008) Lung deposition of droplet aerosols in monkeys. Inhal Toxicol 20(11):1029–1036

    Article  CAS  Google Scholar 

  56. Windt H et al (2010) Particle deposition in the lung of the Gottingen minipig. Inhal Toxicol 22(10):828–834

    Article  CAS  Google Scholar 

  57. Byron P (1985) Respiratory pharmacology and toxicology. J Pharm Sci 75(1):108 (By Mannfred A, Hollinger WB (1986) Saunders Company, Philadelphia, PA. p 207. 23 × 15 cm. ISBN 0-7216-1617-8. $19.95)

    Google Scholar 

  58. Stone KC et al (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6(2):235–243

    Article  CAS  Google Scholar 

  59. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19(1):3–36

    Article  CAS  Google Scholar 

  60. Perez-Gil J (2001) Lipid-protein interactions of hydrophobic proteins SP-B and SP-C in lung surfactant assembly and dynamics. Pediatr Pathol Mol Med 20(6):445–469

    Article  CAS  Google Scholar 

  61. Nakorn PN et al (2007) Surfactant protein C and lung function: new insights into the role of alpha-helical length and palmitoylation. Eur Biophys J 36(4–5):477–489

    Article  Google Scholar 

  62. Klenz U et al (2008) Influence of lipid saturation grade and headgroup charge: a refined lung surfactant adsorption model. Biophys J 95(2):699–709

    Article  CAS  Google Scholar 

  63. Seifert M et al (2007) Solubility versus electrostatics: what determines lipid/protein interaction in lung surfactant. Biophys J 93(4):1192–1203

    Article  CAS  Google Scholar 

  64. Saleem M et al (2009) Calcium ions as “miscibility switch”: colocalization of surfactant protein B with anionic lipids under absolute calcium free conditions. Biophys J 97(2):500–508

    Article  CAS  Google Scholar 

  65. Beck-Broichsitter M et al (2011) Biophysical investigation of pulmonary surfactant surface properties upon contact with polymeric nanoparticles in vitro. Nanomedicine 7(3):341–350

    Article  CAS  Google Scholar 

  66. Bakshi MS et al (2008) Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J 94(3):855–868

    Article  CAS  Google Scholar 

  67. Tatur S, Badia A (2012) Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant. Langmuir 28(1):628–639

    Article  CAS  Google Scholar 

  68. Schleh C et al (2009) The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure. Respir Res 10

    Google Scholar 

  69. Fan QH et al (2011) Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 5(8):6410–6416

    Article  CAS  Google Scholar 

  70. Kanno S, Furuyama A, Hirano S (2008) Effects of eicosane, a component of nanoparticles in diesel exhaust, on surface activity of pulmonary surfactant monolayers. Arch Toxicol 82(11):841–850

    Article  CAS  Google Scholar 

  71. Possmayer F et al (2001) Surface activity in vitro: role of surfactant proteins. Comp Biochem Physiol A Mol Integr Physiol 129(1):209–220

    Article  CAS  Google Scholar 

  72. Sachan AK, Galla HJ (2013) Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer. Small 12(10):201300315

    Google Scholar 

  73. Schneemilch M, Quirke N (2010) Molecular dynamics of nanoparticle translocation at lipid interfaces. Mol Simul 36(11):831–835

    Article  CAS  Google Scholar 

  74. Choe S et al (2008) Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys J 95(9):4102–4114

    Article  CAS  Google Scholar 

  75. Wallace WE et al (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 9(1):23–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Galla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dwivedi, M., Sachan, A.K., Galla, HJ. (2014). Interaction of Nanoparticles with Lipid Monolayers and Lung Surfactant Films. In: Wegener, J. (eds) Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, vol 5. Springer, Cham. https://doi.org/10.1007/11663_2014_9

Download citation

Publish with us

Policies and ethics